The aim of this study was to prepare and evaluate solid dispersion tablets containing a poorly water-soluble drug using porous calcium silicate (PCS) by a wet granulation method. Nifedipine (NIF) was used as the model poorly water-soluble drug. Solid dispersion tablets were prepared with the wet granulation method using ethanol and water by a high-speed mixer granulator. The binder and disintegrant were selected from 7 and 4 candidates, respectively. The dissolution test was conducted using the JP 16 paddle method. The oral absorption of NIF was studied in fasted rats. Xylitol and crospovidone were selected as the binder and disintegrant, respectively. The dissolution rates of NIF from solid dispersion formulations were markedly enhanced compared with NIF powder and physical mixtures. Powder X-ray diffraction (PXRD) confirmed the reduced crystallinity of NIF in the solid dispersion formulations. Fourier transform infrared (FT-IR) showed the physical interaction between NIF and PCS in the solid dispersion formulations. NIF is present in an amorphous state in granules prepared by the wet granulation method using water. The area under the plasma concentration-time curve (AUC) and peak concentration (C(max)) values of NIF after dosing rats with the solid dispersion granules were significantly greater than those after dosing with NIF powder. The solid dispersion formulations of NIF prepared with PCS using the wet granulation method exhibited accelerated dissolution rates and superior oral bioavailability. This method is very simple, and may be applicable to the development of other poorly water-soluble drugs.
Nifedipine (NIF) is a typical light-sensitive drug requiring protection from light during manufacture, storage, and handling of its dosage forms. The purpose of this study was to evaluate the utility of porous calcium silicate (PCS) for maintaining the photostability of NIF in a solid dispersion formulation. Adsorption solid dispersion (ASD) prepared using NIF and PCS as an amorphous formulation was more stable to light irradiation than a physical mixture of NIF and microcrystalline cellulose (a control physical mixture) as a crystalline formulation. In addition, PCS in physical mixtures with NIF adequately protected NIF from photodegradation, suggesting that this protective effect could be because of some screening effect by the porous structure of PCS blocking the passage of light reaching NIF in pores of PCS. These findings suggest that PCS is useful for improving the solubility and photostability of NIF in solid dispersion formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.