Dictyostelium harbors multiple expansin-like genes with generally unknown functions. Thus, we analyzed the expansin-like 3 (expL3) gene and found that its expression was reduced in a null mutant for a STATa gene encoding a transcription factor. The expression of expL3 was developmentally regulated and its transcript was spliced only in the multicellular stages. The expL3 promoter was activated in the anterior prestalk region of the parental strain and downregulated in the STATa null slug, although the expL3 promoter was still expressed in the prestalk region. The expL3 overexpressing strain exhibited delayed development and occasionally formed an aberrant structure, i.e., a fruiting body-like structure with a short stalk. The ExpL3-myc protein bound cellulose.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-015-0964-0) contains supplementary material, which is available to authorized users.
Dictyostelium STATa is a homologue of metazoan signal transducers and activators of transcription (STATs) and is important for morphogenesis. STATa is activated by phosphorylation on Tyr702 when cells are exposed to extracellular cAMP. Although two tyrosine kinase-like (TKL) proteins, Pyk2 and Pyk3, have been definitively identified as STATc kinases, no kinase is known for STATa activation. Based on homology to the previously identified tyrosine-selective TKLs, we identified DrkA, a member of the TKL family and the Dictyostelium receptor-like kinase (DRK) subfamily, as a candidate STATa kinase. The drkA gene is almost exclusively expressed in prestalk A (pstA) cells, where STATa is activated. Transient over-expression of DrkA increased STATa phosphorylation, although over-expression of the protein causes a severe growth defect and cell death. Furthermore, recombinant DrkA protein is auto-phosphorylated on tyrosine and threonine residues, and an in vitro kinase assay shows that DrkA can phosphorylate STATa on Tyr702 in a STATa-SH2 (phosphotyrosine binding) domain-dependent manner. These observations strongly suggest that DrkA is one of the key regulators of STATa tyrosine phosphorylation and is consistent with it being the kinase that directly activates STATa. K E Y W O R D S cyclic AMP, Dictyostelium, phosphotyrosine signal, signal transducer and activator of transcription, tyrosine kinase-like kinase (TKL)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.