To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We demonstrate the allotetraploid origin of X. laevis by partitioning its genome into two homeologous subgenomes, marked by distinct families of “fossil” transposable elements. Based on the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged ~34 million years ago (Mya) and combined to form an allotetraploid ~17–18 Mya. 56% of all genes are retained in two homeologous copies. Protein function, gene expression, and the amount of flanking conserved sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.
SUMMARYA Y-linked gene, DMY/dmrt1bY, in teleost fish medka and a Z-linked gene, DMRT1, in chicken are both required for male sex determination. We recently isolated a W-linked gene, DM-W, as a paralogue of DMRT1 in Xenopus laevis, which has a ZZ/ZW-type sex-determining system. The DNA-binding domain of DM-W shows high sequence identity with that of DMRT1, but DM-W has no significant sequence similarity with the transactivation domain of DMRT1. Here, we first show colocalization of DM-W and DMRT1 in the somatic cells surrounding primordial germ cells in ZW gonad during sex determination. We next examined characteristics of DM-W and DMRT1 as a transcription factor in vitro. DM-W and DMRT1 shared a DNA-binding sequence. Importantly, DM-W dose-dependently antagonized the transcriptional activity of DMRT1 on a DMRT1-driven luciferase reporter system in 293 cells. We also examined roles of DM-W or DMRT1 in gonadal formation. Some transgenic ZW tadpoles bearing a DM-W knockdown vector had gonads with a testicular structure, and two developed into frogs with testicular gonads. Ectopic DMRT1 induced primary testicular development in some ZW individuals. These observations indicated that DM-W and DMRT1 could have opposite functions in the sex determination. Our findings support a novel model for a ZZ/ZW-type system in which DM-W directs female sex as a sex-determining gene, by antagonizing DMRT1. Additionally, they suggest that DM-W diverged from DMRT1 as a dominant-negative type gene, i.e. as a 'neofunctionalization' gene for the ZZ/ZW-type system. Finally, we discuss a conserved role of DMRT1 in testis formation during vertebrate evolution.
The epidermis of the body skin in anurans undergoes a metamorphic fate different from that of the tail skin. The former survives metamorphosis and is transformed into the adult type, while the latter is subject to apoptosis. In a search for an explanation for this regional specificity a t the cellular level, the epidermis of tadpoles of the bullfrog, Rana catesbeiana, was characterized histologically and immunohistochemically during metamorphosis and was compared between the body and the tail. No histological difference in the epidermis was apparent between the two tissues at stages I and I1 defined by Taylor and Kollros (Anatomical Record 94:7-23,1946). A clear difference was first noticed at late stage I11 with respect to basal cells, which are thought to be the progenitor cells of the germinative basal cells of the adult-type epidermis: basal cells appeared at this stage in the body but not in the tail. At stage X, about 22% of epidermal cells were basal cells in the body, whereas there were still no basal cells in the tail. However, we present histological evidence for the presence of adult-type cells in the tail a t the late stages of climax. Weak but consistent expression of adult antigens in the tail skin was also demonstrated immunohistochemically with antibodies against human blood group A antigen, which cross-react with an epitope present in adult-type epidermal cells. We conclude that even the tail epidermis, a larva-specific tissue, contains a population of cells that can differentiate into adult-type cells. The different distribution of basal cells between the body and the tail epidermis closely correlates with the difference in metamorphic fate between the two tissues. 0 1993 Wiley-Liss, Inc.
A recent study revealed the presence of a unique population of myeloid cells in the anterior ventral (AV) mesoderm of Xenopus laevis embryo, as characterized by the expression of peroxidase 2 (POX2), which encodes for a leukocyte-specific enzyme. The current report further characterized the POX2-positive cells in terms of their contribution to hematopoiesis in tadpole and regulatory mechanism in differentiation. Grafting experiments with cytogenetically labeled tissues revealed that AV-derived mesoderm supplies a transient population of migrating leukocytes in the mesenchyme of early tadpole. These cells were rarely found in blood vessels at any stages. Using a ventral marginal zone explant system, we demonstrated that dkk1, shown as a heart inducer in this system, has a strong ability to induce the expression of POX2. Injection of a high dose dkk1 RNA induced a heart marker while a low dose of dkk1 preferentially induced the expression of POX2, suggesting that dkk1 works as a morphogen to determine the different lineages. Overall results indicate that wnt signal inhibitors induce leukocytes at the early neurula stage and that these cells spread to the entire body and exist until the ventral blood island-derived leukocytes appear in the body.
Tail resorption during amphibian metamorphosis has been thought to be controlled mainly by a cell-autonomous mechanism of programmed cell death triggered by thyroid hormone. However, we have proposed a role for the immune response in metamorphosis, based on the finding that syngeneic grafts of tadpole tail skin into adult Xenopus animals are rejected by T cells. To test this, we identified two tail antigen genes called ouro1 and ouro2 that encode keratin-related proteins. Recombinant Ouro1 and Ouro2 proteins generated proliferative responses in vitro in T cells isolated from naive adult Xenopus animals. These genes were expressed specifically in the tail skin at the climax of metamorphosis. Overexpression of ouro1 and ouro2 induced T-cell accumulation and precocious tail degeneration after full differentiation of adulttype T cells when overexpressed in the tail region. When the expression of ouro1 and ouro2 were knocked down, tail skin tissue remained even after metamorphosis was complete. Our findings indicate that Ouro proteins participate in the process of tail regression as immune antigens and highlight the possibility that the acquired immune system contributes not only to self-defense but also to remodeling processes in vertebrate morphogenesis.amphibian ͉ skin ͉ cell death ͉ T cell ͉ remodeling
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.