The findings indicated that anti-M3R antibody very frequently appears in patients with SSc, which is accompanied by severe GIT involvement, suggesting that M3R-mediated enteric cholinergic neurotransmission may provide a pathogenic mechanism for GIT dysmotility in SSc.
The aim of this study was to clarify the role of the immune response to muscarinic type 3 receptor (M3R) in the pathogenesis of Sjögren's syndrome (SS). M3R(-/-) mice were immunized with murine M3R peptides and their splenocytes were inoculated into Rag1(-/-) (M3R(-/-)→Rag1(-/-)) mice. M3R(-/-)→Rag1(-/-) mice had high serum levels of anti-M3R antibodies and low saliva volume. Histological examination showed marked infiltration of mononuclear cells in the salivary glands and immunohistochemistry demonstrated that the majority of these cells were CD4(+) T cells with a few B cells and several IFN-γ- and IL-17-producing cells. Apoptotic cells were present in the salivary glands of M3R(-/-)→Rag1(-/-) mice. Moreover, transfer of only CD3(+) T cells from M3R(-/-) immunized with M3R peptides into Rag1(-/-) mice resulted in cell infiltration and destruction of epithelial cells in the salivary glands, suggesting that M3R reactive CD3(+) T cells play a pathogenic role in the development of autoimmune sialoadenitis. Our findings support the notion that the immune response to M3R plays a crucial role in the pathogenesis of SS-like autoimmune sialoadenitis.
Summary
Duchenne muscular dystrophy (DMD) is a progressive and fatal muscle-wasting disease caused by DYSTROPHIN deficiency. Cell therapy using muscle stem cells (MuSCs) is a potential cure. Here, we report a differentiation method to generate fetal MuSCs from human induced pluripotent stem cells (iPSCs) by monitoring MYF5 expression. Gene expression profiling indicated that MYF5-positive cells in the late stage of differentiation have fetal MuSC characteristics, while MYF5-positive cells in the early stage of differentiation have early myogenic progenitor characteristics. Moreover, late-stage MYF5-positive cells demonstrated good muscle regeneration potential and produced DYSTROPHIN
in vivo
after transplantation into DMD model mice, resulting in muscle function recovery. The engrafted cells also generated PAX7-positive MuSC-like cells under the basal lamina of DYSTROPHIN-positive fibers. These findings suggest that MYF5-positive fetal MuSCs induced in the late stage of iPSC differentiation have cell therapy potential for DMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.