Oocyte maturation in mammals is characterized by a dramatic reorganization of the endoplasmic reticulum (ER). In mice, the ER forms accumulations in the germinal vesicle (GV) stage and distinctive cortical clusters in metaphase II (MII) of the oocyte. Multiple evidence suggests that this ER distribution is important in preparing the oocyte for Ca(2+) oscillations, which trigger oocyte activation at fertilization. In this study, we investigated the time course and illustrated the possible functional role of ER distribution during maturation of porcine oocytes by immunostaining with protein disulfide isomerase (PDI). PDI forms clusters in the cytoplasm of oocytes. After immunostaining, PDI clusters were identified throughout the cytoplasm from the GV to metaphase I (MI) stage; however, at the MII stage, the PDI formed large clusters (1-2 µm) in the animal pole around the first polar body. PDI distribution was prevented by bacitracin, a PDI inhibitor. Our experiments indicated that, during porcine oocyte maturation, PDI undergoes a dramatic reorganization. This characteristic distribution is different from that in the mouse oocyte. Moreover, our study suggested that formation of PDI clusters in the animal pole is a specific characteristic of matured porcine oocytes.
(Ϯ)-(E)-4-Ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide](NOR-3), a nitric-oxide (NO) donor, is known to increase HCO 3 Ϫ secretion in rat stomachs, intracellularly mediated by cGMP; yet, there is no information about the phosphodiesterase (PDE) isozyme involved in this process. We examined the effects of various isozyme-selective PDE inhibitors on the secretion of HCO 3 Ϫ in the mouse stomach in vitro and the type(s) of PDE isozymes involved in the response to NO. The gastric mucosa of DDY mice was stripped of the muscle layer and mounted on an Ussing chamber. HCO 3 Ϫ secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. NOR-3, 8-bromoguanosine 3Ј,5Ј-cyclic monophosphate (8-Br-cGMP), and various PDE inhibitors were added to the serosal side. Vinpocetine (PDE1 inhibitor) or zaprinast (PDE5 inhibitor) was also added serosally 30 min before NOR-3 or 8-Br-cGMP. Both NOR-3 and 8-Br-cGMP stimulated HCO 3 Ϫ secretion in a dosedependent manner, and the response to NOR-3 was significantly inhibited by methylene blue. Likewise, the secretion induced by NOR-3 or 8-Br-cGMP was significantly attenuated by 6-((2S,3S)-3-(4-chloro-2-methylphenylsulfonylaminomethyl)-bicyclo(2.2.2)octan-2-yl)-5Z-hexenoic acid (ONO-8711), the PGE receptor (EP)1 antagonist, as well as indomethacin and potentiated by both vinpocetine and zaprinast at doses that had no effect by themselves on the basal secretion, whereas other subtype-selective PDE inhibitors had no effect. NOR-3 increased the mucosal PGE 2 content in a methylene blueinhibitable manner. These results suggest that NO stimulates gastric HCO 3 Ϫ secretion mediated intracellularly by cGMP and modified by both PDE1 and PDE5, and this response is finally mediated by endogenous PGE 2 via the activation of EP1 receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.