SummaryRecently, intensity-modulated radiation therapy (IMRT) is used worldwide, highly accurate verification of the location using image-guided radiation therapy (IGRT) has become critical. However, the use of cone-beam computed tomography (CBCT) to ascertain the location each time raises concerns about its influence on radiotherapy dosage and increased radiation exposure. The purpose of this study was to measure the absorbed dose using nine kilovoltage (kV) devices and two megavoltage (MV) devices (total 11 devices) at eight facilities, compare the absorbed dose among the devices, and assess the characteristics of the respective devices to ensure optimal clinical operation. For the measurement of the absorbed dose, a farmer-type ionization chamber dosimeter, calibrated using a 60 Co and an IMRT dose verification phantom manufactured from water-equivalent material RW3, was used to measure the absorbed dose at nine points in the phantom for two regions, the pelvic and cephalic region. The average absorbed dose of the pelvic region was 3.09±0.21 cGy in kV-CBCT (OBI), 1.16±0.16 cGy in kV-CBCT (XVI), 5.64±1.48 cGy in MV-CBCT (4 MV), and 6.33±1.54 cGy in MV-CBCT (6 MV). The average absorbed dose of the cephalic region was 0.38±0.03 cGy in kV-CBCT (OBI), 0.23±0.06 cGy in kV-CBCT (XVI), 4.02±0.72 cGy in MV-CBCT (4 MV), and 4.46±0.77 cGy in MV-CBCT (6 MV).
SummaryPurpose: The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. Materials and Methods: We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). Results: In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Conclusion: Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.