Hyperthyroidism in Graves' disease is caused by thyroid-stimulating autoantibodies to the TSH receptor (TSHR), whereas hypothyroidism in Hashimoto's thyroiditis is associated with thyroid peroxidase and thyroglobulin autoantibodies. In some Graves' patients, thyroiditis becomes sufficiently extensive to cure the hyperthyroidism with resultant hypothyroidism. Factors determining the balance between these two diseases, the commonest organ-specific autoimmune diseases affecting humans, are unknown. Serendipitous findings in transgenic BALB/c mice, with the human TSHR A-subunit targeted to the thyroid, shed light on this relationship. Of three transgenic lines, two expressed high levels and one expressed low intrathyroidal A-subunit levels (Hi- and Lo-transgenics, respectively). Transgenics and wild-type littermates were depleted of T regulatory cells (Treg) using antibodies to CD25 (CD4(+) T cells) or CD122 (CD8(+) T cells) before TSHR-adenovirus immunization. Regardless of Treg depletion, high-expressor transgenics remained tolerant to A-subunit-adenovirus immunization (no TSHR antibodies and no hyperthyroidism). Tolerance was broken in low-transgenics, although TSHR antibody levels were lower than in wild-type littermates and no mice became hyperthyroid. Treg depletion before immunization did not significantly alter the TSHR antibody response. However, Treg depletion (particularly CD25) induced thyroid lymphocytic infiltrates in Lo-transgenics with transient or permanent hypothyroidism (low T(4), elevated TSH). Neither thyroid lymphocytic infiltration nor hypothyroidism developed in similarly treated wild-type littermates. Remarkably, lymphocytic infiltration was associated with intermolecular spreading of the TSHR antibody response to other self thyroid antigens, murine thyroid peroxidase and thyroglobulin. These data suggest a role for Treg in the natural progression of hyperthyroid Graves' disease to Hashimoto's thyroiditis and hypothyroidism in humans.
The glycoprotein hormone receptor hinge region connects the leucine-rich and transmembrane domains. The prevalent concept is that the hinge does not play a significant role in ligand binding and signal transduction. Portions of the hinge are redundant and can be deleted by mutagenesis or are absent in certain species. A minimal hinge will be more amenable to future investigation of its structure and function. We, therefore, combined and progressively extended previous deletions (Delta) in the TSH receptor (TSHR) hinge region (residues 277-418). TSHRDelta287-366, Delta287-371, Delta287-376, and Delta287-384 progressively lost their response to TSH stimulation of cAMP generation in intact cells, consistent with a progressive loss of TSH binding. The longest deletion (TSHRDelta287-384), reducing the hinge region from 141 to 43 amino acids, totally lost both functions. Surprisingly, however, with deletions extending from residues 371-384, constitutive (ligand-independent) activity increased severalfold, reversing the suppressive (inverse agonist) effect of the TSHR extracellular domain. TSHR-activating point mutations I486F and I568T in the first and second extracellular loops (especially the former) had reduced activity on a background of TSHRDelta287-371. In summary, our data support the concept that the TSHR hinge contributes significantly to ligand binding affinity and signal transduction. Residues within the hinge, particularly between positions 371-384, appear involved in ectodomain inverse agonist activity. In addition, the hinge is necessary for functionality of activating mutations in the first and second extracellular loops. Rather than being an inert linker between the leucine-rich and transmembrane domains, the TSHR hinge is a signaling-specificity domain.
TSH receptor (TSHR) antibodies and hyperthyroidism are induced by immunizing mice with adenovirus encoding the TSHR or its A-subunit. Depleting regulatory T cells (Treg) exacerbates thyrotoxicosis in susceptible BALB/c mice and induces hyperthyroidism in normally resistant C57BL/6 mice. Vitamin D plays an important role in immunity; high dietary vitamin D intake suppresses (and low intake enhances) adaptive immune responses. Vitamin D-induced immunosuppression may enhance Treg. Therefore, we hypothesized that decreased vitamin D intake would mimic Treg depletion and enhance hyperthyroidism induced by A-subunit adenovirus immunization. BALB/c mice had a reduced ability vs. C57BL/6 mice to generate the active metabolite of vitamin D (1,25-dihydroxyvitamin D3). Vitamin D deficiency induced subtle immune changes in BALB/c (not C57BL/6) mice. Compared with mice fed regular chow, vitamin D-deprived BALB/c mice had fewer splenic B cells and decreased interferon-gamma responses to mitogen and lacked memory T-cell responses to A-subunit protein. However, vitamin D deficiency did not alter TSHR antibody responses measured by ELISA, TSH binding inhibition, or cAMP generation from TSHR-expressing cells. Unexpectedly, compared with vitamin D-sufficient mice, vitamin D-deficient BALB/c mice had lower preimmunization T(4) levels and developed persistent hyperthyroidism. This difference was unrelated to the immunological changes between vitamin D-deficient or -sufficient animals. Previously, we found that different chromosomes or loci confer susceptibility to TSHR antibody induction vs. thyroid function. Our present studies provide evidence that an environmental factor, vitamin D, has only minor effects on induced immunity to the TSHR but directly affects thyroid function in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.