In this paper, we propose a promising signal-sensing method based on both single- and multiple-antenna covariance matrices of the received signal. In comparison with microwave diagnostics or energy detection, the proposed method does not need prior information of signal and noise. Therefore, it can be widely used in noise power uncertainty scenarios, such as signal transmission in hypersonic plasma sheath, with symmetry to the signal-sensing method in cognitive radio. Designing an efficient signal-sensing method that supports both the application for the field of hypersonic plasma sheath communication or cognitive radio is still an attractive subject deserving of study in symmetry journals. Theoretical analysis and the implementation algorithm of a single-antenna covariance matrix are carried out for the proposed method, with a possible extension to multiple-antenna situations. Simulations show the proposed method has excellent performance, even for very low signal-noise-ratio (SNR) signals, and is competitive with state-of-the-art algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.