Using ammonia and Co(CH3COO)2·4H2O
as starting materials, a facile and surfactant-free route to controlled synthesis of
Co3O4 nanoparticles
was proposed. Co3O4
nanoparticles with average sizes of 3.5, 6, 11, 19 and 70 nm were obtained through
adjusting the ethanol amount in the solvent (the ratio of ethanol to water) or
the concentration of raw materials. In this process, the presence of enough
O2 was crucial for the
formation of pure Co3O4
phase. The environmental catalytic properties of as-obtained
Co3O4
nanoparticles were investigated. The results indicated their remarkable catalysis for
ozonation degradation of phenol, which denoted a promising application as catalyst in
waste-water treatment.
In this report, a novel nanocomposite of highly dispersed CeO2 on a TiO2 nanotube was designed and proposed as a peroxidase-like mimic. The best peroxidase-like activity was obtained for the CeO2/nanotube-TiO2 when the molar ratio of Ce/Ti was 0.1, which was much higher than that for CeO2/nanowire-TiO2, CeO2/nanorod-TiO2, or CeO2/nanoparticle-TiO2 with a similar molar ratio of Ce/Ti. Moreover, in comparison with other nanomaterial based peroxidase mimics, CeO2/nanotube-TiO2 nanocomposites exhibited higher affinity to H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB). Kinetic analysis indicated that the catalytic behavior was in accordance with typical Michaelis-Menten kinetics. Ce(3+) sites were confirmed as the catalytic active sites for the catalytic reaction. The first interaction of surface CeO2 with H2O2 chemically changed the surface state of CeO2 by transforming Ce(3+) sites into surface peroxide species causing adsorbed TMB oxidation. Compared with CeO2/nanowire-TiO2, CeO2/nanorod-TiO2, and CeO2/nanoparticle-TiO2, the combination of TiO2 nanotube with CeO2 presented the highest concentration of Ce(3+) thus leading to the best peroxidase-like activity. On the basis of the high activity of CeO2/nanotube-TiO2, the reaction provides a simple method for colorimetric detection of H2O2 and glucose with the detection limits of 3.2 and 6.1 μM, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.