BackgroundSub-therapeutic antibiotics are widely used as growth promoters in the poultry industry; however, the resulting antibiotic resistance threatens public health. A plant-derived growth promoter, Macleaya cordata extract (MCE), with effective ingredients of benzylisoquinoline alkaloids, is a potential alternative to antibiotic growth promoters. Altered intestinal microbiota play important roles in growth promotion, but the underlying mechanism remains unknown.ResultsWe generated 1.64 terabases of metagenomic data from 495 chicken intestinal digesta samples and constructed a comprehensive chicken gut microbial gene catalog (9.04 million genes), which is also the first gene catalog of an animal’s gut microbiome that covers all intestinal compartments. Then, we identified the distinctive characteristics and temporal changes in the foregut and hindgut microbiota. Next, we assessed the impact of MCE on chickens and gut microbiota. Chickens fed with MCE had improved growth performance, and major microbial changes were confined to the foregut, with the predominant role of Lactobacillus being enhanced, and the amino acids, vitamins, and secondary bile acids biosynthesis pathways being upregulated, but lacked the accumulation of antibiotic-resistance genes. In comparison, treatment with chlortetracycline similarly enriched some biosynthesis pathways of nutrients in the foregut microbiota, but elicited an increase in antibiotic-producing bacteria and antibiotic-resistance genes.ConclusionThe reference gene catalog of the chicken gut microbiome is an important supplement to animal gut metagenomes. Metagenomic analysis provides insights into the growth-promoting mechanism of MCE, and underscored the importance of utilizing safe and effective growth promoters.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0590-5) contains supplementary material, which is available to authorized users.
The present study was carried out to evaluate the pharmacological effect of Zn in diarrhoea in relation to intestinal permeability. Seventy-two weaning piglets, aged 24 d, were allocated to three dietary treatments: (1) control diet without supplemental Zn; (2) control diet supplemented with 2000 mg Zn/kg from ZnO; (3) control diet supplemented with 2000 mg Zn/kg from tetrabasic zinc chloride (TBZC). At the end of a 14 d experiment period, piglets were weighed, feed consumption was measured, and mucosal barrier function was determined using the lactulose/mannitol test. Expression of mucosal tight junction protein was measured at RNA and protein level. Inclusion of TBZC or ZnO in the diet significantly increased average daily gain (P, 0·01) and average daily feed intake (P,0·05), while leading to reduced feed conversion ratio (P,0·05) and faecal scores (P,0·01). TBZC reduced urinary lactulose:mannitol ratios of weaning piglets (P,0·05), while dietary supplementation with ZnO tended to reduce urinary lactulose:mannitol ratios (P¼ 0·061). ZnO or TBZC significantly enhanced the mRNA and protein expression of occludin (P, 0·05) and zonula occludens protein-1 (ZO-1) (P, 0·05) in the ileal mucosa. Piglets fed the TBZC-supplemented diet had a higher level of occludin than pigs fed the ZnO-supplemented diet (P,0·05). The results indicate that Zn supplementation decreased faecal scores and the reduction was accompanied by reduced intestinal permeability, which was evident from the reduced urinary lactulose:mannitol ratios and increased expression of occludin and ZO-1. Therefore, the protective effect of pharmacological levels of dietary Zn in reducing diarrhoea might, at least partly, be associated with reduced intestinal permeability.Dietary zinc: Piglets: Intestinal permeability: Occludin: Zonula occludens protein-1 (ZO-1)
BackgroundNecrotic enteritis caused by Clostridium perfringens infection leads to serious economic losses in the global poultry production. In the present study, we investigated the protective effects of essential oils (EO, which contained 25 % thymol and 25 % carvacrol as active components) supplementation on growth performance, gut lesions, intestinal morphology, and immune responses of the broiler chickens infected with C. perfringens. A total of 448 1-day-old male broiler chicks were allocated into eight treatment groups following a 4 × 2 factorial arrangement with four dietary EO dosages (0, 60, 120, or 240 mg/kg) and two infection status (with or without C. perfringens challenge from d 14 to 20).ResultsThe challenge did not impair the growth performance of birds, but induced gut lesions and increased crypt depth in the ileum (P ≤ 0.05). It also down-regulated the claudin-1 and occludin mRNA expression (P ≤ 0.05), up-regulated the mRNA expression of interleukin-1β (P ≤ 0.05), tended to increase the toll-like receptor (TLR) 2 mRNA expression (P < 0.10) in the ileum, and enhanced the mucosal secretory IgA production (P ≤ 0.05). In the challenged birds, dietary EO supplementation linearly alleviated the gut lesions and improved the ratio of villus height to crypt depth (P ≤ 0.05), and the supplementation of 120 and 240 mg/kg EO increased the serum antibody titers against Newcastle disease virus (P ≤ 0.05). Regardless of challenge, the EO supplementation showed a tendency to linearly elevate the feed conversion efficiency between 14 and 28 d of age as well as the occludin mRNA expression (P < 0.10), and linearly inhibited the mRNA expression of TLR2 and tumor necrotic factor-α in the ileum (P ≤ 0.05).ConclusionsThe dietary supplementation of EO could alleviate the intestinal injury by improving intestinal integrity and modulating immune responses in the C. perfringens-challenged broiler chickens.
This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P < 0.001), villus height/crypt depth ratio (P < 0.05), and the number of goblet cells (P < 0.001) in the jejunum at 14 d postinfection (dpi), but significantly increased the number of intestinal secretory IgA (sIgA)-expressing cells at 14 dpi (P < 0.01) and total sIgA levels in the jejunum at 7 (P < 0.05) and 14 dpi (P < 0.01) compared with the unchallenged birds (NC). Dietary β-1,3/1,6-glucan supplementation not only significantly increased villus height, villus height/crypt depth ratio, and the number of goblet cells (P < 0.01), but also increased the number of sIgA-expressing cells (P < 0.05) and sIgA content in the jejunum at 14 dpi (P < 0.01) in birds challenged with Salmonella Typhimurium in comparison with Salmonella Typhimurium challenge alone. β-1,3/1,6-Glucan addition had significant inhibitory effects (P < 0.05) on cecal Salmonella colonization levels and liver Salmonella invasion of the Salmonella Typhimurium-infected birds compared with the PC group. Intestinal tight junction proteins claudin-1, claudin-4, and occludin mRNA expression in the jejunum at 14 dpi was significantly decreased by Salmonella Typhimurium challenge alone (P < 0.01) compared with that of the NC group, whereas β-1,3/1,6-glucan supplementation significantly increased claudin-1 and occludin mRNA expression (P < 0.01) at 14 dpi in the jejunum of the Salmonella Typhimurium-infected birds in comparison with the PC group. Our results indicate that dietary β-1,3/1,6-glucan can alleviate intestinal mucosal barrier impairment in broiler chickens challenged with Salmonella Typhimurium.
BackgroundClostridium perfringens is the main etiological agent of necrotic enteritis. Lactobacilli show beneficial effects on intestinal health in infectious disease, but the protective functions of lactobacilli in C. perfringens-infected chickens are scarcely described. This study examined the effects of Lactobacillus acidophilus (L. acidophilus) on the growth performance and intestinal health of broiler chickens challenged with Clostridium perfringens (C. perfringens) over a 28-day period. Using a 2 × 2 factorial arrangement of treatments, a total of 308 1-day-old male Arbor Acres broiler chicks were included to investigate the effects of Lactobacillus acidophilus (L. acidophilus) on the growth performance and intestinal health of broiler chickens challenged with Clostridium perfringens (C. perfringens) during a 28-day trial.ResultsDuring infection (d 14–21), C. perfringens challenge decreased the average daily gain (P < 0.05), and increased feed conversion ratio and the mortality rate (P < 0.05). However, dietary supplementation with L. acidophilus increased the body weight of C. perfringens-infected broilers on d 21 (P < 0.05), and tended to decrease the mortality (P = 0.061). C. perfringens challenge decreased the villus height (P < 0.05), the ratio of villus height to crypt depth (P < 0.05) and OCLN (occludin) mRNA expression (P < 0.05), and increased the pro-inflammatory cytokine expression in the spleen and jejunum, the intestinal populations of C. perfringens and Escherichia (P < 0.05), and the serum content of endotoxin (P < 0.05), regardless of L. acidophilus supplementation. In contrast, dietary L. acidophilus reducedthe intestinal lesion score of challenged broilers (P < 0.05), the mRNA expression of pro-inflammatory cytokines, ileal populations of Escherichia and serum endotoxin content (P < 0.05), but increased the intestinal Lactobacillus populations (P < 0.05), irrespective of C. perfringens challenge.ConclusionDietary addition of L. acidophilus could improve the intestinal health and reduce the mortality of broilers suffering from necrotic enteritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.