During the early postnatal period, environmental influences play a pivotal role in shaping the development of the neocortex, including the prefrontal cortex (PFC) that is crucial for working memory and goal-directed actions. Exposure to stressful experiences during this critical period may disrupt the development of PFC pyramidal neurons and impair the wiring and function of related neural circuits. However, the molecular mechanisms of the impact of early-life stress on PFC development and function are not well understood. In this study, we found that repeated stress exposure during the first postnatal week hampered dendritic development in layers II/III and V pyramidal neurons in the dorsal agranular cingulate cortex (ACd) and prelimbic cortex (PL) of neonatal mice. The deleterious effects of early postnatal stress on structural plasticity persisted to adulthood only in ACd layer V pyramidal neurons. Most importantly, concurrent blockade of corticotropin-releasing factor receptor 1 (CRF 1 ) by systemic antalarmin administration (20 mg/g of body weight) during early-life stress exposure prevented stress-induced apical dendritic retraction and spine loss in ACd layer V neurons and impairments in PFC-dependent cognitive tasks. Moreover, the magnitude of dendritic regression, especially the shrinkage of apical branches, of ACd layer V neurons predicted the degree of cognitive deficits in stressed mice. Our data highlight the region-specific effects of early postnatal stress on the structural plasticity of prefrontal pyramidal neurons, and suggest a critical role of CRF 1 in modulating early-life stress-induced prefrontal abnormalities.
Calbindin modulates intracellular Ca dynamics and synaptic plasticity. Reduction of hippocampal calbindin levels has been implicated in early-life stress-related cognitive disorders, but it remains unclear how calbindin in distinct populations of hippocampal neurons contributes to stress-induced memory loss. Here we report that early-life stress suppressed calbindin levels in CA1 and dentate gyrus (DG) neurons, and calbindin knockdown in adult CA1 or DG excitatory neurons mimicked early-life stress-induced memory loss. In contrast, calbindin knockdown in CA1 interneurons preserved long-term memory even after an acute stress challenge. These results indicate that the dysregulation of calbindin in hippocampal excitatory, but not inhibitory, neurons conveys susceptibility to stress-induced memory deficits. Moreover, calbindin levels were downregulated by early-life stress through the corticotropin-releasing hormone receptor 1-nectin3 pathway, which in turn reduced inositol monophosphatase levels. Our findings highlight calbindin as a molecular target of early-life stress and an essential substrate for memory.
Neuregulin 1 (NRG1) has been identified as a susceptibility gene for schizophrenia, and dysregulation of NRG1 and its ErbB receptors is implicated in the pathophysiology of the disorder. The present study examined the protein expression levels of NRG1beta, ErbB2, ErbB3 and ErbB4 in the rat prefrontal cortex and hippocampus following a 4-wk administration of haloperidol (1 mg/kg i.p.), clozapine (10 mg/kg i.p.), or risperidone (1 mg/kg i.p.) by using immunohistochemistry and Western blot. The results showed that haloperidol promoted the expression of NRG1beta and ErbB4, whereas clozapine inhibited NRG1beta expression in the rat prefrontal cortex. Both haloperidol and clozapine significantly increased the protein levels of NRG1beta and ErbB receptors in the rat hippocampus. Repeated administration of risperidone only increased the expression of NRG1beta and ErbB4 in the hippocampus. Our findings demonstrate that antipsychotic drugs differentially regulate the expression of NRG1 and ErbB receptors in the rat brain, which may provide insight into the molecular basis of the pharmacological profile of antipsychotic drugs.
There is an increasing heavy disease burden of major depressive disorder (MDD) globally. Both high diagnostic heterogeneity and complicated pathological mechanisms of MDD pose significant challenges. There is much evidence to support anhedonia as a core feature of MDD. In the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, anhedonia is further emphasised as a key item in the diagnosis of major depression with melancholic features. Anhedonia is a multifaceted symptom that includes deficits in various aspects of reward processing, such as anticipatory anhedonia, consummatory anhedonia, and decision-making anhedonia. Anhedonia is expected to become an important clinicopathological sign for predicting the treatment outcome of MDD and assisting clinical decision making. However, the precise neurobiological mechanisms of anhedonia in MDD are not clearly understood. In this paper, we reviewed (1) the current understanding of the link between anhedonia and MDD; (2) the biological basis of the pathological mechanism of anhedonia in MDD; and (3) challenges in research on the pathological mechanisms of anhedonia in MDD. A more in-depth understanding of anhedonia associated with MDD will improve the diagnosis, prediction, and treatment of patients with MDD in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.