Background Femoral neck fractures are the worst consequence of osteoporosis (OP), and its early prevention and treatment have become a public health problem. This study aims to investigate the relationship of bone-related biomarkers, femoral neck bone mineral density (BMD) and maximum load (Lmax), selecting the indicator which can reflect femoral neck bone loss and reduced bone strength. Methods A total of 108 patients were recruited from January 2017 to December 2019. Venous blood samples were collected from patients before total hip replacement, and femoral neck samples were collected during the surgery. Femoral neck BMD, femoral neck Lmax, bone-related markers (serum levels of bone turnover markers, protein expression of type I collagen (COL-I) and osteopontin (OPN) in femoral neck) were all measured and analyzed. Results The expression of COL-I in femoral neck were significantly decreased, whereas other markers were all significantly increased with the decreasing of femoral neck BMD and Lmax (P < 0.05). Among them, serum C-terminal telopeptide of type I collagen (CTX) levels and OPN expression of femoral neck were increased in osteopenia. In multiple linear regression analysis, CTX and OPN were both negatively correlated with femoral neck BMD and Lmax, and they were independent factors of femoral neck BMD and Lmax, whereas COL-I was independent factor affecting Lmax (P < 0.05). Besides, CTX was negatively correlated with COL-I (β = -0.275, P = 0.012) and positively correlated with OPN (β = 0.295, P = 0.003). Conclusions Compared with other indicators, serum CTX was more sensitive to differences in bone mass and bone strength of femoral neck, and could be considered as surrogate marker for OPN and COL-I.Early measurement of CTX could facilitate the diagnosis of osteopenia and provide a theoretical basis for delaying the occurrence of femoral neck OP and fragility fractures.
Background Femoral neck fractures are serious consequence of osteoporosis (OP), numbers of people are working on the micro—mechanisms of femoral neck fractures. This study aims to investigate the role and weight of microscopic properties on femoral neck maximum load (Lmax), funding the indicator which effects Lmax most. Methods A total of 115 patients were recruited from January 2018 to December 2020. Femoral neck samples were collected during the total hip replacement surgery. Femoral neck Lmax, micro—structure, micro—mechanical properties, micro—chemical composition were all measured and analyzed. Multiple linear regression analyses were performed to identify significant factors that affected the femoral neck Lmax. Results The Lmax, cortical bone mineral density (cBMD), cortical bone thickness (Ct. Th), elastic modulus, hardness and collagen cross—linking ratio were all significantly decreased, whereas other parameters were significantly increased during the progression of OP (P < 0.05). In micro—mechanical properties, elastic modulus has the strongest correlation with Lmax (P < 0.05). The cBMD has the strongest association with Lmax in micro—structure (P < 0.05). In micro—chemical composition, crystal size has the strongest correlation with Lmax (P < 0.05). Multiple linear regression analysis showed that elastic modulus was most strongly related to Lmax (β = 0.920, P = 0.000). Conclusions Compared with other parameters, elastic modulus has the greatest influence on Lmax. Evaluation of microscopic parameters on femoral neck cortical bone can clarify the effects of microscopic properties on Lmax, providing a theoretical basis for the femoral neck OP and fragility fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.