Considering some unmeasurable states, a fuzzy static output control problem of nonlinear stochastic systems is discussed in this paper. Based on a modelling approach, a Takagi–Sugeno (T–S) fuzzy system, constructed by a family of stochastic differential equations and membership functions, is applied to represent nonlinear stochastic systems. Parallel distributed compensation (PDC) technology is used to construct the static output controller. A line-integral Lyapunov function (LILF) is used to derive some sufficient conditions for guaranteeing the asymptotical stability in the mean square. From the LILF, a potential conservatism produced by the derivative of the membership function is eliminated to increase the relaxation of sufficient conditions. Furthermore, those conditions are transferred into linear matrix inequality (LMI) form via projection lemma. According to the convex optimization algorithm, the feasible solutions are directly obtained to establish the static output fuzzy controller. Finally, a numerical example is applied to demonstrate the effectiveness and usefulness of the proposed design method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.