The (110) crystal surface of Si was bombarded by slow highly charged ions (Pbq+,Arq+) and the secondary particle emission was measured for different incident angles. Comparing the relationship between the sputtering yield and the incident angle, channeling effect was suggested. The channeling effect in interaction of highly charged ions with Si causes the sputtering yield to depend strongly on kinetic energy. Highly charged ions can enhance sputtering yield at smaller incident angles. At incident angles from 40° to 50°, the higher the potential energy of highly charged ion, the greater the sputtering yield.
The D(d,p)T reaction in Be metal environments has been measured to investigate the electron screening effect in metals in an energy region of from 5.5 keV to 10 keV in a center of mass system (CMS) at a temperature of 121 K. The depth distribution of deuteron density in Be metals has an impact on the observed reaction yields. A model of deuteron density distribution in metal has been proposed to obtain the original yields. A screening energy of (116±46) eV has been obtained with the assumed deuteron density distribution model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.