Purpose To retain consumer attention and increase purchasing rates, many e-commerce vendors have adopted content-based recommender systems. However, apart from text-based documents, there is little theoretical background guiding element selection, resulting in a limited content analysis problem. Another inherent problem is overspecialization. The purpose of this paper is to establish a value-based recommendation methodology for identifying favorable attributes, benefits, and values on the basis of means-end chain theory. The identified elements and the relationships between them were utilized to construct a recommender system without incurring either problem. Design/methodology/approach This study adopted soft laddering and content analysis to collect popular elements. The relationships between the elements were established by using a hard laddering online questionnaire. The elements and the relationships were utilized to build a hierarchical value map (HVM). A mathematical model was then devised on the basis of the HVM to predict user preferences of attributes. Findings The results of a performance comparison showed that the proposed method outperformed the content-based attribute recommendation method and a hybrid method by 39 and 68 percent, respectively. Originality/value Although hybrid methods have been proposed to resolve the problem of overspecialization in content-based recommender systems, such methods have incurred “cold start” and “sparsity” problems. The proposed method can provide recommendations without causing these problems while outperforming the content-based and hybrid approaches.
Abstract. "Big data" is becoming a hot topic in the Internet. The long tail problem of the massive online courses also becomes the biggest headache for operation team of online education. The manner in which the reader wants most courses show to be presented before the user is the key to improve the quality of online education. Personalized recommendation system is to discover the readers interests tendency based on the existing user data, project data, and interactive data, thus to provide personalized product recommendation for readers. This article is based on the two kinds of algorithms, namely the content and the collaborative filtering recommendation to propose an improved integration scheme, which can make good use of existing data to discover the useful knowledge for readers' recommendation. The method firstly solves the sparsity problem in traditional collaborative filtering, and meanwhile we start from the global structure relation of course, to analyze the relationship between the reader and the course more comprehensively. The algorithm to improve the accuracy of recommendation from multiple angles, and provides a feasible method for precise recommendation of online educational video.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.