BACKGROUND Rabbit meat is a good edible meat source with high nutritional values. Cooking has a significant impact on the edible properties, nutritional qualities and flavor characteristics of meat. Studying the effect of cooking methods on rabbit meat qualities could encourage more understanding and acceptance of rabbit meat by consumers, and could also provide some reference for rabbit meat processing. Therefore, the effects of boiling, sous‐vide cooking, steaming, microwaving, roasting, frying and pressure cooking on the edible, nutritive and volatile qualities of rabbit meat were investigated. RESULTS The sous‐vide cooked rabbit meat sample showed higher moisture content, water‐holding capacity and lower cooking losses than other samples, but the results of roasted rabbit meat sample were the opposite, and scanning electron microscopy observations also verified the results. There was no significant difference in 2‐thiobarbituric acid reactive substance (TBARS) value in the cooked samples except for roasting. Microwaving, roasting and frying exhibited stronger antioxidant activity than the other cooked samples after in vitro digestion. A total of 38 volatiles were identified in the cooked meat samples, and the samples were well divided into four groups by principal component analysis, and 13 volatiles were considered discriminatory variables for the cooked rabbit meat. CONCLUSION The physicochemical characteristics of cooked meat differed significantly between the processing methods. Roasted meat showed lower TBARS value and stronger antioxidant activity after simulated digestion compared to the other meats. However, pressure cooked meat detected the most volatile components while roasting the least. © 2022 Society of Chemical Industry.
BACKGROUND: Zanthoxylum bungeanum essential oil (ZBEO) is a popular seasoning, commonly used in the food industry. It contains many easily degraded and highly volatile bioactive substances. Control of the stability of the bioactive substances in ZBEO is therefore very important in the food industry.RESULTS: In this study, microencapsulation was applied to improve ZBEO stability. The key parameters for microcapsule preparation were optimized by the Box-Behnken design method, and the optimum conditions were as follows: ratio of core to wall, 1:8; ratio of hydroxypropyl-⊍-cyclodextrin (HPCD) to soy protein isolate (SPI), 4; total solids content, 12%; and homogenization speed, 12 000 rpm. Antioxidant experiments have indicated that tea polyphenols (TPPs) effectively inhibited hydroxy-⊍-sanshool degradation in ZBEO microcapsules. Application of ZBEO microcapsules in Chinese-style sausage effectively inhibited lipid oxidation in sausages and protected hydroxy-⊍-sanshool and typical volatiles from volatilization and degradation during sausage storage. CONCLUSION:The results suggested that ZBEO microencapsulation is an effective strategy for improving the stability of its bioactive components and flavor ingredients during food processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.