Today, lithographic methods enable combinatorial synthesis of >50,000 oligonucleotides per cm(2), an advance that has revolutionized the whole field of genomics. A similar development is expected for the field of proteomics, provided that affordable, very high-density peptide arrays are available. However, peptide arrays lag behind oligonucleotide arrays. This is mainly due to the monomer-by-monomer repeated consecutive coupling of 20 different amino acids associated with lithography, which adds up to an excessive number of coupling cycles. A combinatorial synthesis based on electrically charged solid amino acid particles resolves this problem. A computer chip consecutively addresses the different charged particles to a solid support, where, when completed, the whole layer of solid amino acid particles is melted at once. This frees hitherto immobilized amino acids to couple all 20 different amino acids in one single coupling reaction to the support. The method should allow for the translation of entire genomes into a set of overlapping peptides to be used in proteome research.
Abstract:A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The "blow-off" method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterisation of triboelectric properties of particles relative to different surfaces.
In this paper, we demonstrate an innovative electromagnetic targeting system utilizing a passive magnetic-flux-concentrator for tracking endobronchoscope used in the diagnosis process of lung cancer tumors/lesions. The system consists of a magnetic-flux emitting coil, a magnetic-flux receiving electromagnets-array, and high permeability silicon-steel sheets rolled as a collar (as the passive magnetic-flux-concentrator) fixed in a guide sheath of an endobronchoscope. The emitting coil is used to produce AC magnetic-flux, which is consequently received by the receiving electromagnets-array. Due to the electromagnetic-induction, a voltage is induced in the receiving electromagnets-array. When the endobronchoscope’s guide sheath (with the silicon-steel collar) travels between the emitting coil and the receiving electromagnets-arrays, the magnetic flux is concentrated by the silicon-steel collar and thereby the induced voltage is changed. Through analyzing the voltage–pattern change, the location of the silicon–steel collar with the guide sheath is targeted. For testing, a bronchial-tree model for training medical doctors and operators is used to test our system. According to experimental results, the system is successfully verified to be able to target the endobronchoscope in the bronchial-tree model. The targeting errors on the x-, y- and z-axes are 9 mm, 10 mm, and 5 mm, respectively.
In this paper, we present an electromagnetic targeting system with semi-circular configuration for navigating endo-bronchoscope. This system consists of a magnetic-flux emitting electromagnets-arrays fixed on a semi-circular mechanical-support, magnetic-flux receiving electromagnets, and a magnetic-flux concentrator (i.e., silicon-steel collar) which fixed on distal end of a guide sheath of the endo-bronchoscope. In initial state, when the emitting electromagnets produce magnetic flux in sequence, the receiving electromagnets receive the magnetic flux and consequently produce voltage outputs by the electromagnetic induction. When the silicon-steel collar with the guide sheath travels through the system, the magnetic flux is concentrated by the collar. Thus, the voltage outputs of the receiving electromagnets are changed. By analyzing the change of voltage outputs, the location of the silicon-steel collar with the guide sheath is obtained/targeted. This means that the location of the endo-bronchoscope is also targeted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.