Lead zirconate titanate (PZT)‐based piezoelectric ceramics are important functional materials for various electromechanical applications, including sensors, actuators, and transducers. High piezoelectric coefficient and mechanical quality factor are essential for the resonant piezoelectric application. However, since these properties are often inversely proportional, simultaneously high performances are hard to achieve, consequently, a wide range of applications are strongly restricted. In the present study, exceptionally well‐balanced performances are achieved in PZT‐based ceramics via innovative defect engineering, which involves multi‐scale coordination among defect dipole, domain‐wall density, and grain boundary. These materials are superior to many state‐of‐the‐art commercial counterparts, which can potentially satisfy high‐end requirements for advanced electromechanical applications, such as energy harvesting, structural health monitoring, robotic sensors, and actuator.
Optimizing charge transfer (CT) processes at donor/acceptor interfaces is an important subject to improving photocurrent density. Geometries of functional polymers play important roles in design of new types of polymers, which were used as electron donor to improve effective separation of electron-hole pairs at donor/acceptor interfaces. In this article, a novel W-type of polymer, poly(1-[4-(9-(2-ethylhexyl)carbazole-3-yl)]phenylazo-2-phenylazoacenaphthylene), was synthesized by a Suzuki coupling reaction for improving interaction between polymers and electron acceptors to enhance intermolecular CT. Geometry of combination of the polymer and C60 shows that main-chain of the polymer could sufficiently touch C60 derivatives. The polymer exhibited a broadband light absorption at the wavelength range from 250 to 650 nm. Ultraviolet–visible spectra and cyclic voltammetry curve suggest that the highest occupied, lowest unoccupied molecular orbital energy levels, and energy gap values are −5.09, −3.18 and 1.91 eV. Fluorescence quenching experiments shows that 99.9% of emission fluorescence of the polymer was quenched by added C60. Therefore, excited electrons at the polymer would be completely transferred to C60 molecules. This article suggests a new W-type functional polymer for improving intermolecular CT processes at donor/acceptor interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.