This study aimed to explore the role of obestatin R gene-related protein (OB-RGRP) in autocrine signal transduction of adipocytes. Primary rat adipocytes were isolated and verified by microscopic observation and oil red O staining. OB-RGRP expression vector and OB-RGRP siRNA (si-OB-RGRP) were constructed and transfected into adipocytes. Adipocytes were then divided into five groups: (1) Control; (2) Vector (empty expression vector); (3) OB-RGRP (OB-RGRP expression vector); (4) si-OB-RGRP NC (si-OB-RGRP negative control); (5) si-OB-RGRP. mRNA and protein levels of OB-RGRP, JAK2, phosphorylated JAK2 (p-JAK2), STAT3 and phosphorylated STAT3 (p-STAT3) were examined using RT-PCR and western blot, respectively. Results showed that mRNA and protein levels of OB-RGRP in the Vector and si-OB-RGRP NC groups were similar to those in the Control group. Their levels in the si-OB-RGRP and OB-RGRP groups were significantly down-regulated and up-regulated (p < .05), respectively, in comparison with the control cells. There was no significant difference in the mRNA and protein levels of JAK2 and STAT3 among various groups. Moreover, the si-OB-RGRP NC and Vector groups induced similar ratios of p-JAK2 to JAK2 (p-JAK2/JAK2) and p-STAT3 to STAT3 (p-STAT3/STAT3) to the Control group. However, these two ratios in the si-OB-RGRP and OB-RGRP groups were significantly reduced and elevated (p < .05), respectively, in comparison with the Control group. These results suggested that OB-RGRP overexpression enhanced the levels of p-JAK2 and p-STAT3 while OB-RGRP silencing lowered their levels. In conclusion, OB-RGRP regulated the phosphorylation of JAK2 and STAT3 in primary rat adipocytes. ARTICLE HISTORY
Background: The healing of cutaneous wounds requires better strategies, which remain a challenge. Previous reports indicated that the therapeutic function of mesenchymal stem cells is mediated by exosomes. This work demonstrated the regenerative effects of engineered BMSCs-derived Exosomal miR-542-3p in skin wound mouse models. Methods: Bone marrow mesenchymal stem cells (BMSCs) -derived exosomes (BMSCs-Exos) were isolated by ultracentrifugation and identified by Transmission Electron Microscope (TEM) and Nanoparticle Tracking Analysis (NTA). BMSCs-Exo loaded with miRNA-542-3p by electroporation. We explored the effects of miRNA-542-3p-Exo on the proliferation and migration of Human Skin Fibroblasts (HSFs)/Human dermal microvascular endothelial cells (HMECs). In addition, The angiogenesis of HMECs was detected by Tube formation assay in vitro. The effects of miRNA-542-3p-Exo in the skin wound mouse model were detected by H&E staining, Masson staining, and immunofluorescence analysis. We assessed the effect of miRNA-542-3p-Exo on collagen deposition, new blood vessel formation, and wound remodeling in a skin wound mouse model. Results: MiRNA-542-3p-Exos could be internalized by HSFs/HMECs and enhance the proliferation, migration, and angiogenesis of HSFs/HMECs in vitro and in vivo. The protein expression of collagen1/3 was significantly increased after miRNA-542-3p-Exo treatment in HSFs. In addition, the local injection of miRNA-542-3p-Exo promoted cellular proliferation, collagen deposition, neovascularization, and accelerated wound closure. Conclusion: ConclusionThis study suggested that miRNA-542-3p-Exo can stimulate HSFs/HMECs function. The treatment of miRNA-542-3p-Exo in the skin wound mouse model significantly promotes wound repair. The therapeutic potential of miRNA-542-3p-Exo may be a future therapeutic strategy for cutaneous wound healing.
Background: Pseudomonas aeruginosa is an opportunistic pathogen, and because of its specificity, its treatments appear tricky in postrhinoplasty infections with internal implants. This study summarizes the clinical characteristics and treatment of this type of infections to provide some reference for clinical work. Methods: We retrospectively analyzed 10 patients who were diagnosed with a nasal infection of P. aeruginosa after implant nasal augmentation. The results of the bacterial culture and drug sensitivity test of the patients’ wound secretions were summarized and analyzed. We summarized the characteristics of the patients’ infection and the treatments, and we also summarized the patients’ prognosis. Results: In these 10 cases, their implants included rib cartilage and ear cartilage alone, as well as their own cartilage combined with expanded polytetrafluoroethylene and silicone. All patients developed wound infections within 1 month after rhinoplasty, with bacterial cultures of P. aeruginosa. Prolonged use of sensitive antibiotics, as well as wound dressing changes, failed to keep the infection well under control. Patients whose implant was removed and thoroughly debrided within 1 week of infection did not experience any serious complications. In patients who were infected for >1 week before surgery to remove the implants, complications such as nasal column necrosis and nasal contracture occurred, and later the nasal repair was performed after multiple surgeries. Conclusions: For bacterial infections in postrhinoplasty wounds with implants, we recommend early bacterial culture. If the infection is clearly P. aeruginosa, the implant should be removed and thoroughly debrided as soon as possible to avoid serious complications. Level of Evidence: Level IV.
Inflammatory responses play a critical role in the progress of neurodegenerative disorders. MSC-Exos is considered to have an anti-inflammatory effect on the treatment strategy for brain injury. However, the therapeutic effect and possible mechanism of Exosomal miR-210 on microglia polarization-induced neuroinflammation and neurite outgrowth have not been reported. MSC-Exos were isolated by ultracentrifugation, identified by Nanosight NS300, transmission electron microscopy, and western bolt. In vitro, to explore the protective mechanism of MSC-Exos against neuroinflammation, the microglial BV2 cell was exposed to lipopolysaccharide to assess inflammatory changes. The intake of 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate (Dil)-MSC-Exos into microglia was observed by fluorescence microscopy. The results showed that Exosomal miR-210 treatment significantly inhibited the production of nitric oxide and pro-inflammatory cytokines. Exosomal miR-210 treatment also increased the number of M2 microglia cells and inhibited M1 microglia polarization. In addition, western blot demonstrated that Exosomal miR-210 reduced neuronal apoptosis. Thus, Exosomal miR-210 attenuated neuronal inflammation and promoted neurite outgrowth. Exosomal miR-210 from MSCs attenuated neuronal inflammation and contributed to neurogenesis possibly by inhibiting microglial M1 polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.