The previous outbreaks of SARS-CoV and MERS-CoV have led researchers to study the role of diagnostics in impediment of further spread and transmission. With the recent emergence of the novel SARS-CoV-2, the availability of rapid, sensitive, and reliable diagnostic methods is essential for disease control. Hence, we have developed a reverse transcription loopmediated isothermal amplification (RT-LAMP) assay for the specific detection of SARS-CoV-2. The primer sets for RT-LAMP assay were designed to target the nucleocapsid gene of the viral RNA, and displayed a detection limit of 10 2 RNA
Most of touchable surfaces in MERS units were contaminated by patients and health care workers and the viable virus could shed through respiratory secretion from clinically fully recovered patients. These results emphasize the need for strict environmental surface hygiene practices, and sufficient isolation period based on laboratory results rather than solely on clinical symptoms.
Adaptation of influenza A viruses to a new host species usually involves the mutation of one or more of the eight viral gene segments, and the molecular basis for host range restriction is still poorly understood. To investigate the molecular changes that occur during adaptation of a low-pathogenic avian influenza virus subtype commonly isolated from migratory birds to a mammalian host, we serially passaged the avirulent wild-bird H5N2 strain A/Aquatic bird/Korea/W81/05 (W81) in the lungs of mice. The resulting mouse-adapted strain (ma81) was highly virulent (50% mouse lethal dose ؍ 2.6 log 10 50% tissue culture infective dose) and highly lethal. Nonconserved mutations were observed in six viral genes (those for PB2, PB1, PA, HA, NA, and M). Reverse genetic experiments substituting viral genes and mutations demonstrated that the PA gene was a determinant of the enhanced virulence in mice and that a Thr-to-Iso substitution at position 97 of PA played a key role. In growth kinetics studies, ma81 showed enhanced replication in mammalian but not avian cell lines; the PA 97I mutation in strain W81 increased its replicative fitness in mice but not in chickens. The high virulence associated with the PA 97I mutation in mice corresponded to considerably enhanced polymerase activity in mammalian cells. Furthermore, this characteristic mutation is not conserved among avian influenza viruses but is prevalent among mouse-adapted strains, indicating a host-dependent mutation. To our knowledge, this is the first study that the isoleucine residue at position 97 in PA plays a key role in enhanced virulence in mice and is implicated in the adaptation of avian influenza viruses to mammalian hosts.
Due to the limitation of rapid development of specific antiviral drug or vaccine for novel emerging viruses, an accurate and rapid diagnosis is a key to manage the virus spread. We developed an efficient and rapid method with high specificity for the Middle East Respiratory Syndrome coronavirus (MERS-CoV), based on one-pot reverse transcription loop-mediated isothermal amplification (one-pot RT-LAMP). A set of six LAMP primers [F3, B3, FIP, BIP, LF (Loop-F), and LB (Loop-B)] were designed using the sequence of nucleocapsid (N) gene with optimized RT-LAMP enzyme conditions: 100 U M-MLV RTase and 4 U Bst polymerase, implying that the reaction was able to detect four infectious viral genome copies of MERS-CoV within a 60 min reaction time period. Significantly, EvaGreen dye has better signal read-out properties in one-pot RT-LAMP reaction and is more compatible with DNA polymerase than SYBR green I. Isothermally amplified specific N genes were further evaluated using field-deployable microchamber devices, leading to the specific identification of as few as 0.4 infectious viral genome copies, with no cross-reaction to the other acute respiratory disease viruses, including influenza type A (H1N1 and H3N2), type B, human coronavirus 229E, and human metapneumovirus. This sensitive, specific and feasible method provides a large-scale technical support in emergencies, and is also applied as a sample-to-detection module in Point of Care Testing devices.
Human respiratory syncytial virus (HRSV) is the most common respiratory pathogen among infants and young children. To investigate the prevalence and genetic characteristics of HRSVs circulating in South Korea, we analyzed medical records of patients and performed molecular analysis of the G-protein gene of viruses detected from nasopharyngeal aspirates (NPA) of admitted patients at the Pediatrics Department of Chungbuk National University Hospital from April 2008 to April 2010. Epidemiological data revealed that the prevalence of HRSV infection was high during both winter seasons (October 2008 to February 2009 and November 2009 to February 2010). Of the 297 positive NPA specimens from infants or children tested, 67% were identified as HRSV-A while 33% were HRSV-B. The HRSV subgroup B was the most dominant in December 2008, but its dominance was dramatically replaced by HRSV subgroup A strains by February 2009. Phylogenetic analysis of the G protein sequences of HRSVs revealed novel genotypes within the HRSV-A (genotype CB-A) and B (genotypes BA11 and CB-B) subgroups in South Korea in addition to other strains identified in other countries. Molecular analysis also revealed genetic variability at the C-terminal end of the G proteins of the two HRSV subgroups, suggesting selection pressure in this region, which may potentially impact immune recognition. This is the first report of these HRSV variants in South Korea, indicating active genetic evolution of HRSV strains. Therefore, this study provides information on the molecular epidemiology of current HRSVs in the country and presents data for comparative analysis with other HRSV strains circulating worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.