We report the fabrication of tungsten nanowires, by simple thermal treatment of W films, that behave as self-catalytic layers and their excellent electron field emission properties as well. The obtained nanowires have a diameter ranging from 10 to 50 nm, showing perfect straightness and neat appearance. Typical turn-on field for the electron emission is about 5 V/μm, and the field enhancement factor β becomes 38 256, which is very close to that of the high efficient single-wall carbon nanotube emitters. The most exciting result is the possibility of easy fabrication of perfectly straight nanowires as promising building blocks for terabit-level interconnection and nanomachine components without the intentional use of any heterogeneous catalysts.
In this work we report the direct nano-bridging of carbon nanotubes (CNT) between micro-sized islands using conventional photolithography technique necessary for the nanomachining and the molecular device applications compatible with the Si-based process. The most distinct feature in this work is to use a growth barrier of Nb metal or insulating layer on the top of the catalytic metal to prevent the growth of CNT from the vertical direction to the substrate. As a result, CNTs of either “straight line” or a perfect “Y shape” were selectively grown between lateral sides of the catalytic metals or pre-defined electrodes without any trace of vertical growth. The length of the CNTs was 500–1000 nm and the diameter thinner than about 20 nm. We suggest that magnetic and crystallographic characteristics due to the unique interaction between the Nb overlayer and ferromagnetic Ni catalysts and nano-granulation of Ni layer during the growth process are important for the lateral (i.e., parallel to the substrate) CNTs growth. These results clearly indicate that this method would be one of the most feasible fabrication techniques for the nanomachines or the electronic applications with a high integration level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.