DNA ligases are divided into two groups according to their cofactor requirement to form ligase-adenylate, ATP-dependent DNA ligases and NAD(+)-dependent DNA ligases. The conventional view that archaeal DNA ligases only utilize ATP has recently been disputed with discoveries of dual-specificity DNA ligases (ATP/ADP or ATP/NAD(+)) from the orders Desulfurococcales and Thermococcales. Here, we studied DNA ligase encoded by the hyperthermophilic crenarchaeon Sulfophobococcus zilligii. The ligase exhibited multiple cofactor specificity utilizing ADP and GTP in addition to ATP. The unusual cofactor specificity was confirmed via a DNA ligase nick-closing activity assay using a fluorescein/biotin-labelled oligonucleotide and a radiolabelled oligonucleotide. The exploitation of GTP as a catalytic energy source has not to date been reported in any known DNA ligase. This phenomenon may provide evolutionary evidence of the nucleotide cofactor utilization by DNA ligases. To bolster this hypothesis, we summarize and evaluate previous assertions. We contend that DNA ligase evolution likely started from crenarchaeotal DNA ligases and diverged to eukaryal DNA ligases and euryarchaeotal DNA ligases. Subsequently, the NAD(+)-utilizing property of some euryarchaeotal DNA ligases may have successfully differentiated to bacterial NAD(+)-dependent DNA ligases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.