In order to better understand ecosystem functioning under simultaneous pressures (e.g. both climate change and fishing pressures), integrated modelling approaches are advocated. We developed an end-to-end model of the southern Benguela ecosystem by coupling the high trophic level model OSMOSE with a biophysical model (ROMS-N 2 P 2 Z 2 D 2 ). OSMOSE is a spatial, multispecies, individual-based model simulating the whole life cycle of fish with fish schools interacting through opportunistic and size-based predation. It is linked to the biogeochemical model through the predation process; plankton groups are food for fish and fish apply a predation mortality on plankton. Here we describe the two-way coupling between the models and follow a pattern-oriented modelling approach to validate the simulations. At the individual level, model outputs are consistent with observed diets for several species from small pelagic fish to top predatory fish, although biases emerge from underestimation of macrozooplankton and lack of vertical structure. At the population level, the seasonality of the size structure is similar between the model and data. At the community level, the modelled trophic structure is consistent with the knowledge available for this ecosystem. The structure of the foodweb is an emergent property of the model, showing trophic links between species, their strength and the strong connectivity observed. We also highlight the capacity of this model for tracking indicators at various hierarchical levels.
Online supplementary material:(1) Additional ROMS-N 2 P 2 Z 2 D 2 equations and parameters, (2) maps of the spatial distribution of species modelled in OSMOSE, (3) graphs of the seasonality of fishing pressure and spawning for species modelled in OSMOSE, and (4) literature references of parameter values used for HTL (high trophic level) organisms in OSMOSE, are available as Supplementary Appendices S1-S4 to the online publication at http://dx.
Crystal splitting and enhanced photocatalytic activities caused by implied dislocations were observed in hierarchical TiO(2) nano-architectures prepared by one-pot hydrothermal synthesis in concentrated HCl. Microstructural observation revealed that the nanowires formed by continuous splitting of TiO(2) nano-belts, which is caused by a lattice misorientation of about 6°, were generated by an array of dislocations. In addition, the larger amount of dislocations implied in TiO(2) nano-architectures induces higher photocatalytic activities under ultra-violet illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.