In the liver, insulin controls both lipid and glucose metabolism through its cell surface receptor and intracellular mediators such as phosphatidylinositol 3-kinase and serine-threonine kinase AKT. The insulin signaling pathway is further modulated by protein tyrosine phosphatase or lipid phosphatase. Here, we investigated the function of phosphatase and tension homologue deleted on chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/AKT pathway, by targeted deletion of Pten in murine liver. Deletion of Pten in the liver resulted in increased fatty acid synthesis, accompanied by hepatomegaly and fatty liver phenotype. Interestingly, Pten liver-specific deletion causes enhanced liver insulin action with improved systemic glucose tolerance. Thus, deletion of Pten in the liver may provide a valuable model that permits the study of the metabolic actions of insulin signaling in the liver, and PTEN may be a promising target for therapeutic intervention for type 2 diabetes
The circulating level of the inflammatory cytokine interleukin (IL)-6 is elevated in various insulin-resistant states including type 2 diabetes, obesity, cancer, and HIV-associated lipodystrophy. To determine the role of IL-6 in the development of insulin resistance, we examined the effects of IL-6 treatment on whole-body insulin action and glucose metabolism in vivo during hyperinsulinemic-euglycemic clamps in awake mice. Pretreatment of IL-6 blunted insulin's ability to suppress hepatic glucose production and insulin-stimulated insulin receptor substrate (IRS)-2-associated phosphatidylinositol (PI) 3-kinase activity in liver. Acute IL-6 treatment also reduced insulin-stimulated glucose uptake in skeletal muscle, and this was associated with defects in insulin-stimulated IRS-1-associated PI 3-kinase activity and increases in fatty acyl-CoA levels in skeletal muscle. In contrast, we found that co-treatment of IL-10, a predominantly anti-inflammatory cytokine, prevented IL-6 -induced defects in hepatic insulin action and signaling activity. Additionally, IL-10 co-treatment protected skeletal muscle from IL-6 and lipidinduced defects in insulin action and signaling activity, and these effects were associated with decreases in intramuscular fatty acyl-CoA levels. This is the first study to demonstrate that inflammatory cytokines IL-6 and IL-10 alter hepatic and skeletal muscle insulin action in vivo, and the mechanism may involve cytokineinduced alteration in intracellular fat contents. These findings implicate an important role of inflammatory cytokines in the pathogenesis of insulin resistance.
STN DBS is a promising new surgical option for the treatment of advanced PD. The marked clinical benefits obtained in these severely disabled patients outweighed the adverse effects.
Background Leucine-rich repeat kinase 2 (LRRK2) is known to harbor highly penetrant mutations linked to familial parkinsonism. However, its full polymorphic variability in relationship to Parkinson’s disease (PD) risk has not been systematically assessed. Methods We examined the frequency pathogenicity of 121 exonic LRRK2 variants in three ethnic series (Caucasian [N=12,590], Asian [N=2,338] and Arab-Berber [N=612]) consisting of 8,611 patients and 6,929 control subjects from 23 separate sites of the Genetic Epidemiology of Parkinson’s Disease Consortium. Findings Excluding carriers of previously known pathogenic mutations, new independent risk associations were found for polymorphic variants in Caucasian (p.M1646T, OR: 1.43, 95% CI: 1.15 – 1.78, P=0.0012) and Asian (p.A419V, OR: 2.27, 95% CI: 1.35 – 3.83, P=0.0011) populations. In addition, a protective haplotype was observed at >5% frequency (p.N551K-p.R1398H-p.K1423K) in the Caucasian and Asian series’, with a similar finding in the small Arab-Berber series that requires further study (combined 3-series OR: 0.82, 95% CI: 0.72 – 0.94, P=0.0043). Of the two previously reported Asian risk variants p.G2385R was found to be associated with disease (OR: 1.73, 95% CI: 1.20 – 2.49, P=0.0026) but no association was observed for p.R1628P (OR: 0.62, 95% CI: 0.36 – 1.07, P=0.087). Also in the Arab-Berber series, p.Y2189C showed potential evidence of risk association with PD (OR: 4.48, 95% CI: 1.33 – 15.09, P=0.012). Of note, two variants (p.I1371V and p.T2356I) which have been previously proposed as pathogenic were observed in patient and control subjects at the same frequency. Interpretation LRRK2 offers an example where multiple rare and common genetic variants in the same gene have independent effects on disease risk. Lrrk2, and the pathway in which it functions, is important in the etiology and pathogenesis of a greater proportion of patients with PD than previously believed. Funding The present study and original funding for the GEO-PD Consortium was supported by grants from Michael J. Fox Foundation. Studies at individual sites were supported by a number of funding agencies world-wide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.