In this article, we study data analysis methods for accelerated life test (ALT) with blocking. Unlike the previous assumption of normal distribution for random block effects, we advocate the use of Weibull regression model with gamma random effects for making statistical inference of ALT data. To estimate the unknown parameters in the proposed model, maximum likelihood estimation and Bayesian estimation methods are provided. We illustrate the proposed methods using real data examples and simulation examples. Numerical results suggest that distribution of random effects has minimal impact on the estimation of fixed effects in the Weibull regression models. Furthermore, to demonstrate the advantage of our proposed model, we also provide methods to compare ALT plans and thus identify the optimal ALT plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.