We report the self-assembly of organic-inorganic block copolymers (BCP) in thin-films by simple solvent annealing on unmodified substrates. The resulting vertically oriented lamellae and cylinders are converted to a hard silica mask by a single step highly selective oxygen plasma etching. The size of the resulting nanostructures in the case of cylinders is less than 10 nm.
Recently, individual single-walled carbon nanotubes (SWNTs) functionalized with azo-benzene chromophores were shown to form a new class of hybrid nanomaterials for optoelectronics applications. Here we use a number of experimental and computational techniques to understand the binding, orientation, and nature of coupling between chromophores and the nanotubes, all of which are relevant to future optimization of these hybrid materials. We find that the binding energy between chromophores and nanotubes depends strongly on the type of tether that is used to bind the chromophores to the nanotubes. The pyrene tethers form a much stronger attachment to nanotubes compared to anthracene or benzene rings, resulting in more than 80% retention of bound chromophores post-processing. Density functional theory (DFT) calculations show that the binding energy of the chromophores to the nanotubes is maximized for chromophores parallel to the nanotube sidewall, even with the use of tethers; optical second harmonic generation measurements show that there is nonetheless a partial radial orientation of the chromophores on the nanotubes. We find weak electronic coupling between the chromophores and the SWNTs, consistent with noncovalent binding. This weak coupling is still sufficient to quench the chromophore fluorescence through a combination of static and dynamic processes. Photoluminescence measurements show a lack of significant energy transfer from the chromophores to isolated semiconducting nanotubes.
Spontaneous one dimensional arrangements of spherical Au nanoparticles were accomplished by using a liquid crystalline thiol ligand, 4'-(12-mercaptododecyloxy)biphenyl-4-carbonitrile. Simple thermal treatment of Au nanoparticles with the ligands showed 1D ordering of the Au nanoparticles.
An asymmetric bis-dendritic gelator (1) consisting of an azobenzene dendron and an aliphatic amide dendron was synthesized to achieve a photoresponsive self-assembly. The compound gelled in a wide range of organic solvents, even at concentrations as low as 0.02% (w/v) in cyclohexane. The self-assembled fibrillar network structure was confirmed by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) analyses. The rapid and reversible gel-sol transition by irradiation with UV and visible light was investigated by UV-vis and Fourier transform infrared (FT-IR) spectroscopy, FE-SEM, and XRD analyses. Upon irradiation of the gel with UV, trans-to-cis isomerization of the azobenzene groups occurred, and the gel turned into a sol state. The gel was recovered immediately by the reverse cis-to-trans isomerization after the exposure to visible light. The trans-to-cis isomerization of the azobenzenes disrupted the hydrogen bonding of azobenzene amide groups, together with the hydrogen bonding in the aliphatic amide dendron. This facile communication between the two amide dendrons leads to the dissociation of the gel fibers and collapse of the gel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.