In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropriate addition of Au@silica NPs regardless of the silica-shell thickness. Compared to the P3HT:PCBM/ZnO NR hybrid solar cell, a 63% enhancement in the efficiency is achieved by the P3HT:PCBM/Au@silica NP/ZnO NR hybrid solar cell. The finite difference time domain simulations indicate that the strength of the Fano resonance, i.e., the electric field of the quasi-static asymmetric quadrupole, on the surface of Au@silica NPs in the P3HT:PCBM/ZnO NR hybrid significantly decreases with increasing thickness of the silica shell. Raman characterization reveals that the degree of P3HT order increases when Au@silica NPs are incorporated into the P3HT:PCBM/ZnO NR hybrid. The charge separation at the interface between P3HT and PCBM as well as the electron transport in the active layer are retarded by the electric field of the Fano resonance. Nevertheless, the prolongation of the electron lifetime and the reduction of the electron transit time in the P3HT:PCBM/ZnO NR hybrid solar cells, which result in an enhancement of electron collection, are achieved by the addition of Au@silica NPs. This may be attributed to the improvement in the degree of P3HT order and connectivity of PCBM when Au@silica NPs are incorporated into the P3HT:PCBM active layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.