Phospholipase A2 (PLA2) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic-PLA2. These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.
The ovulatory process is activated by a surge of LH, a pituitary gonadotropin, which initiates a cohort of dramatic changes in biochemical, physical, and gene expression in the ovary, leading to follicle rupture and oocyte release. Here we report the identification of endothelin-2 (EDN2) as a last moment-trigger of follicle rupture. In the ovary, EDN2 is exclusively and transiently expressed in the granulosa cells immediately before ovulation. Administration of EDN2 to the ovarian tissue induced rapid contraction, whereas addition of tezosentan, an endothelin receptor antagonist, diminishes the EDN2 effect. In vivo, treatment of tezosentan before ovulation substantially decreases gonadotropin-induced superovulation. As a target tissue of EDN2 action, we identified a layer of smooth muscle cells in the follicular wall of each follicle. Taken together, our data indicate that EDN2 induces follicular rupture by constricting periovulatory follicles.
HIV-associated damage to the central nervous system results in cognitive and motor deficits. Anti-retroviral therapies reduce the severity of symptoms, yet the proportion of patients affected has remained the same or increased. Although approximately half of HIV-infected patients worldwide are women, the question of whether biological sex influences outcomes of HIV infection has received little attention. We explored this question for both behavioral and cellular/morphologic endpoints, using a transgenic mouse that inducibly expresses HIV-1 Tat in the brain. After 3 months of HIV-1 Tat exposure, both sexes showed similar reduced open field ambulation. Male Tat+ mice also showed reduced forelimb grip strength and enhanced anxiety in a light–dark box assay. Tat+ males did not improve over 12 weeks of repeated rotarod testing, indicating a motor memory deficit. Male mice also had more cellular deficits in the striatum. Neither sex showed a change in volume or total neuron numbers. Both had equally reduced oligodendroglial populations and equivalent microglial increases. However, astrogliosis and microglial nitrosative stress were higher in males. Dendrites on medium spiny neurons in male Tat+ mice had fewer spines, and levels of excitatory and inhibitory pre- and post-synaptic proteins were disrupted. Our results predict sex as a determinant of HIV effects in brain. Increased behavioral deficits in males correlated with glial activation and synaptic damage, both of which are implicated in cognitive/motor impairments in patients. Tat produced by residually infected cells despite antiretroviral therapy may be an important determinant of the synaptodendritic instability and behavioral deficits accompanying chronic infection.Electronic supplementary materialThe online version of this article (doi:10.1007/s00429-013-0676-6) contains supplementary material, which is available to authorized users.
Human immunodeficiency virus (HIV)-infected individualswho abuse opiates show faster progression to AIDS, and enhanced incidence of HIV-1 encephalitis. Most opiates with abuse liability are preferential agonists for l-opioid receptors (MORs), and MORs are expressed on both neurons and glia, including oligodendrocytes (OLs). Tat, gp120, and other viral toxins, cause neurotoxicity in vitro and/or when injected into brain, and co-exposure to opiates can augment HIV-1 protein-induced insults to both glial and neuronal populations. We examined the effects of HIV-1 Tat 1/2 opiate exposure on OL survival and differentiation. In vivo studies utilized transgenic mice expressing Tat 1-86 regulated by an inducible glial fibrillary acidic protein promoter. Although MBP levels were unchanged on immunoblots, certain structural and apoptotic indices were abnormal. After only 2 days of Tat induction, OLs showed an upregulation of active caspase-3 that was enhanced by morphine exposure. Tat also upregulated TUNEL staining, but only in the presence of morphine. Tat significantly reduced the length of processes in Golgi-Kopsch impregnated OLs. A greater proportion of cells exhibited diminished or aberrant cytoplasmic processes, especially when mice expressing Tat were co-exposed to morphine. Collectively, our data show that OLs in situ are extremely sensitive to effects of Tat 1/2 morphine, although it is not clear if immature OLs as well as differentiated OLs are targeted equally. Significant elevations in caspase-3 activity and TUNEL labeling, and evidence of increased degeneration/ regeneration of OLs exposed to Tat 1/2 morphine suggest that toxicity toward OLs may be accompanied by heightened OL turnover. V V C
Myelin pallor in HIVϩ individuals can occur very early during the disease process. While myelin damage might partly originate from HIV-induced vascular changes, the timing suggests that myelin and/or oligodendrocytes (OLs) may be directly affected. Histological
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.