In this study, minimum quantity coolant/lubrication (MQCL) is found to have significant impact on the surface quality and mechanical properties of the micromilled thin-walled work piece that is the core component of an aeroaccelerometer. Three kinds of coolants were used in the micromilling process to analyze their effects on surface quality and mechanical properties of the component. The experiment results show that an appropriate dynamic viscosity of coolant helps to improve surface roughness. The high evaporation rate of the coolants can enhance the cooling performance. Comparing with the dry machining case, MQCL has better performance on improving tool wear, surface quality, and mechanical properties of the micromilled work piece. It yielded up to 1.4–10.4% lower surface roughness compared with the dry machining case in this experiment. The machined work piece with the best mechanical properties and the one with the worst mechanical properties appeared in the ethyl alcohol and the dry machining case, respectively. The reasons for deteriorating surface quality and mechanical properties in dry machining cases are also analyzed. For improving the micromilling process, the penetration and cooling effect of the coolants are more important. This paper gives references to obtain better service performance of the component by improving the micromilling process.
Light-weight and high-strength aluminum alloy drill pipes are potential and promising to replace traditional steel drill pipes. In this study, the grain size and mechanical properties of aluminum alloy drilling pipe materials reinforced by in-situ TiB2 particles were studied. The results showed when reinforced by in-situ TiB2 particles the grain size of aluminum alloy materials was refined from 155 m to 57 m and ultimate tensile strength was increased from 590 MPa to 720 MPa. Besides, the results also indicated that the friction coefficient was reduced from 0.99 to 0.50 and thus the abrasion resistance of 7075 aluminum alloy was enhanced by 34 %. This study provided theoretical basis for the application of light-weight and high-strength aluminum alloy drill pipes in directional drilling and ultra-deep wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.