In a real Hilbert space, let GSVI and CFPP represent a general system of variational inequalities and a common fixed point problem of a countable family of nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new subgradient extragradient implicit rule, we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solution set of another monotone equilibrium problem, the GSVI and the CFPP. Some strong convergence results for the proposed algorithms are established under the mild assumptions, and they are also applied for finding a common solution of the GSVI, VIP, and FPP, where the VIP and FPP stand for a variational inequality problem and a fixed point problem, respectively.
In real Hilbert spaces, let the CFPP indicate a common fixed-point problem of asymptotically nonexpansive operator and countably many nonexpansive operators, and suppose that the HVI and VIP represent a hierarchical variational inequality and a variational inequality problem, respectively. We put forward Mann hybrid deepest-descent extragradient approach for solving the HVI with the CFPP and VIP constraints. The proposed algorithms are on the basis of Mann’s iterative technique, viscosity approximation method, subgradient extragradient rule with linear-search process, and hybrid deepest-descent rule. Under suitable restrictions, it is shown that the sequences constructed by the algorithms converge strongly to a solution of the HVI with the CFPP and VIP constraints.
We introduce a new concept of Hadamard well-posedness of a generalized mixed variational inequality in a Banach space. The relations between the Levitin–Polyak well-posedness and Hadamard well-posedness for a generalized mixed variational inequality are studied. The characterizations of Hadamard well-posedness for a generalized mixed variational inequality are established.
In a real Hilbert space, let the CFPP, VIP, and HFPP denote the common fixed-point problem of countable nonexpansive operators and asymptotically nonexpansive operator, variational inequality problem, and hierarchical fixed point problem, respectively. With the help of the Mann iteration method, a subgradient extragradient approach with a linear-search process, and a hybrid deepest-descent technique, we construct two modified Mann-type subgradient extragradient rules with a linear-search process for finding a common solution of the CFPP and VIP. Under suitable assumptions, we demonstrate the strong convergence of the suggested rules to a common solution of the CFPP and VIP, which is only a solution of a certain HFPP.
In real Banach spaces, the concept of α-well-posedness is extended to the class of generalized hemivariational inequalities systems consisting of two parts which are of symmetric structure mutually. First, certain concepts of α-well-posedness for generalized hemivariational inequalities systems are put forward. Second, certain metric characterizations of α-well-posedness for generalized hemivariational inequalities systems are presented. Lastly, certain equivalence results between strong α-well-posedness of both the system of generalized hemivariational inequalities and its system of derived inclusion problems are established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.