Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through ACE2 receptors, leading to coronavirus disease (COVID-19)-related pneumonia, while also causing acute myocardial injury and chronic damage to the cardiovascular system. Therefore, particular attention should be given to cardiovascular protection during treatment for COVID-19.
We performed a meta-analysis of 2 genome-wide association studies of coronary artery disease comprising 1,515 cases with coronary artery disease and 5,019 controls, followed by de novo replication studies in 15,460 cases and 11,472 controls, all of Chinese Han descent. We successfully identified four new loci for coronary artery disease reaching genome-wide significance (P < 5 × 10−8), which mapped in or near TTC32-WDR35, GUCY1A3, C6orf10-BTNL2 and ATP2B1. We also replicated four loci previously identified in European populations (PHACTR1, TCF21, CDKN2A/B and C12orf51). These findings provide new insights into biological pathways for the susceptibility of coronary artery disease in Chinese Han population.
BackgroundDyslipidemia is one of the most important factors for coronary artery disease (CAD). Atherogenic index of plasma (AIP) is a novel indicator involved in dyslipidemia. However, the relation between AIP and CAD in postmenopausal women remains unclear. We hypotheses that AIP is a strong predictive indicator of CAD in postmenopausal women.MethodsA propensity score matching case–control study including 348 postmenopausal CAD cases and 348 controls was conducted in the present study.ResultsCompared with controls, CAD patients had higher levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (APOB), but lower high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1 (APOA-1). The values of nontraditional lipid profiles, including non-HDL-C, TC/HDL-C, LDL-C/HDL-C, non-HDL-C/HDL-C (atherogenic index, AI), TC∗TG∗LDL/HDL-C (lipoprotein combine index, LCI), log(TG/HDL-C) (atherogenic index of plasma, AIP) and APOB/APOA-1 were all significantly higher in the CAD patients. The results of Pearson correlation analyses showed AIP was positively and significantly correlated with TC (r = 0.092, P < 0.001), TG (r = 0.775, P = 0.015), APOB (r = 0.140, P < 0.001), non-HDL-C (r = 0.295, P < 0.001), TC/HDL-C (r = 0.626, P < 0.001), LDL-C/HDL-C (r = 0.469, P < 0.001), AI (r = 0.626, P < 0.001), LCI (r = 0.665, P < 0.001), APOB/APOA-1(r = 0.290, P < 0.001) and was negatively correlated with APOA-1 (r = − 0.278, P < 0.001) and HDL-C (r = − 0.665, P < 0.001). In the multivariate logistic regression analysis, AIP was an independent predictor of CAD. After adjusting for the traditional clinical prognostic factors including diabetes and hypertension, we found AIP could be an independent risk factor for CAD (odds ratio [OR], 3.290; 95% confidence interval [CI], 1.842–5.877, P < 0.001). After adjusting for multiple clinical factors include diabetes, hypertension, smoking, heart ratio, fasting blood glucose, we found AIP also could a powerful risk factor, OR = 3.619, 95%CI (2.003–6.538), P < 0.001.ConclusionThe present study indicated that AIP might be a strong marker for predicting the risk of CAD in postmenopausal women.
Muscle development is regulated under a series of complicate processes, and non-coding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), have been reported to play important roles in regulating myoblast proliferation and differentiation. We found that miR-107 expression was high in skeletal muscle of Qinchuan cattle. Overexpression of miR-107 inhibited bovine myoblasts differentiation and protected cells from apoptosis. Wnt3a was identified as a target of miR-107 by luciferase activity, real-time qPCR, and western blotting assays. Knockdown of Wnt3a inhibited bovine myoblasts differentiation and apoptosis, and this effect was similar to miR-107 overexpression. We also found circFGFR4 to promote myoblasts differentiation and to induce cell apoptosis. Via luciferase screening and RNA pull-down assays, circFGFR4 was observed to sponge miR-107. Overexpression of circFGFR4 increased the expression of Wnt3a, whereas this effect was abolished by miR-107. These results demonstrated that circFGFR4 binding miR-107 promotes cell differentiation via targeting Wnt3a in bovine primary myoblasts.
Circular RNAs (circRNAs) have been identified in various tissues and cell types from human, monkey, porcine, and mouse. However, knowledge on circRNAs in bovine muscle development is limited. We downloaded and analyzed the circRNAs sequencing data of bovine skeletal muscle tissue, and further characterized the role of a candidate circRNA (circFUT10) in muscle development. Quantitative real-time PCR (qPCR) and Western blot assays were used to confirm the expression of genes involved in myoblasts differentiation and proliferation. Flow cytometry was performed to assess cell cycle distribution and cell apoptosis. EdU incorporation and CCK-8 assay were performed to demonstrate cell proliferation. We demonstrated that circFUT10 was highly (but differentially) expressed in embryonic and adult skeletal muscle tissue. circFUT10 induced bovine primary myoblasts differentiation and increased the expression of MyoD, MyoG, and MyhC in mRNA and protein levels. circFUT10 increased the number of myoblasts in the G0/G1 phase of the cell cycle, and decreased the proportion of cells in the S-phase. circFUT10 inhibited the proliferation of myoblasts and promoted them apoptosis. Via a luciferase screening assay, circFUT10 is observed to sponge to miR-133a with three potential binding sites. Specifically, we show that circFUT10 regulated myoblasts differentiation and cell survival by directly binding to miR-133a and inhibiting miR-133a activity. Modulation of circFUT10 expression in muscle tissue may emerge as a potential target in breeding strategies attempting to control muscle development in cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.