Objective
Metabolic stress in obesity induces endothelial inflammation and activation, which initiates adipose tissue inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms underlying endothelial inflammation induction are not completely understood. Stimulator of interferon genes (STING) is an important molecule in immunity and inflammation. In the present study, we sought to determine the role of STING in palmitic acid (PA)-induced endothelial activation/inflammation.
Approach and Results
In cultured endothelial cells, PA treatment activated STING, as indicated by its perinuclear translocation and binding to interferon regulatory factor 3 (IRF3), leading to IRF3 phosphorylation and nuclear translocation. The activated IRF3 bound to the promoter of intercellular adhesion molecule 1 (ICAM-1) and induced ICAM-1 expression and monocyte–endothelial cell adhesion. When analyzing the upstream signaling, we found that PA activated STING by inducing mitochondrial damage. PA treatment caused mitochondrial damage and leakage of mitochondrial DNA (mtDNA) into the cytosol. Through the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), the mitochondrial damage and leaked cytosolic mtDNA activated the STING-IRF3 pathway and increased ICAM-1 expression. In mice with diet-induced obesity, the STING-IRF3 pathway was activated in adipose tissue. However, STING deficiency (Stinggt/gt) partially prevented diet-induced adipose tissue inflammation, obesity, insulin resistance, and glucose intolerance.
Conclusions
The mitochondrial damage-cGAS-STING-IRF3 pathway is critically involved in metabolic stress-induced endothelial inflammation. STING may be a potential therapeutic target for preventing cardiovascular diseases and insulin resistance in obese individuals.
Mitochondrial injury and dysfunction, a significant feature in metabolic syndrome, triggers endothelial cell dysfunction and cell death. Increasing evidence suggests that mitophagy, a process of autophagic turnover of damaged mitochondria, maintains mitochondrial integrity. PINK1 (phosphatase and tensin homolog (PTEN)-induced putative kinase 1) and Parkin signaling is a key pathway in mitophagy control. In this study, we examined whether this pathway could protect mitochondria under metabolic stress. We found that palmitic acid (PA) induced significant mitophagy and activated PINK1 and Parkin in endothelial cells. Knocking down PINK1 or Parkin reduced mitophagy, leading to impaired clearance of damaged mitochondria and intracellular accumulation of mitochondrial fragments. Furthermore, PINK1 and Parkin prevented PA-induced mitochondrial dysfunction, ROS production and apoptosis. Finally, we show that PINK1 and Parkin were up-regulated in vascular wall of obese mice and diabetic mice. Our study demonstrates that PINK1-Parkin pathway is activated in response to metabolic stress. Through induction of mitophagy, this pathway protects mitochondrial integrity and prevents metabolic stress-induced endothelial injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.