A track record: Upconverting nanoparticles (UCNPs) were tracked in living HeLa cells and their active transport by motor proteins was visualized in real time. The remarkable photostability of the UCNPs and the noninvasiveness of near‐infrared excitation allowed continuous observation of living cells for as long as 6 h.
In this study, we introduced histidine residues into l-arginine grafted PAMAM G4 dendrimers to enhance proton buffering capacity and evaluated the physicochemical characteristics and transfection efficacies in vitro. The results showed that the synthesized PAMAM G4 derivatives effectively delivered pDNA inside cells and the transfection level improved considerably as the number of histidine residues increased. Grafting histidine residues into the established polymer vector PAMAM G4-arginine improved their proton buffering capacity. The cytotoxicity of PAMAM G4 derivatives was tested and it was confirmed that they displayed relatively lower cytotoxicity compared to PEI25KD in various cell lines. Also, confocal microscopy results revealed that PAMAM G4 derivatives effectively delivered pDNA into cells, particularly into the nucleus. These PAMAM dendrimer derivatives conjugated with histidines and arginines may provide a promising polymeric gene carrier system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.