With the fast developing of mobile terminals, positioning techniques based on fingerprinting method draw attention from many researchers even world famous companies. To conquer some shortcomings of the existing fingerprinting systems and further improve the system performance, on the one hand, in the paper, we propose a coarse positioning method based on random forest, which is able to customize several subregions, and classify test point to the region with an outstanding accuracy compared with some typical clustering algorithms. On the other hand, through the mathematical analysis in engineering, the proposed kernel principal component analysis algorithm is applied for radio map processing, which may provide better robustness and adaptability compared with linear feature extraction methods and manifold learning technique. We build both theoretical model and real environment for verifying the feasibility and reliability. The experimental results show that the proposed indoor positioning system could achieve 99% coarse locating accuracy and enhance 15% fine positioning accuracy on average in a strong noisy environment compared with some typical fingerprinting based methods.
In the cognitive radio system, spectrum sensing for detecting the presence of primary users in a licensed spectrum is a fundamental problem. Energy detection is the most popular spectrum sensing scheme used to differentiate the case where the primary user's signal is present from the case where there is only noise. In fact, the nature of spectrum sensing can be taken as a binary classification problem, and energy detection is a linear classifier. If the signal-to-noise ratio (SNR) of the received signal is low, and the number of received signal samples for sensing is small, the binary classification problem is linearly inseparable. In this situation the performance of energy detection will decrease seriously. In this paper, a novel approach for obtaining a nonlinear threshold based on support vector machine with particle swarm optimization (PSO-SVM) to replace the linear threshold used in traditional energy detection is proposed. Simulations demonstrate that the performance of the proposed algorithm is much better than that of traditional energy detection.
Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.