A trapped air pocket can cause a partial air lock in the top of a hump pipe zone. It increases the resistance and decreases the hydraulic cross section, as well as the capacity of the water supply pipeline. A hydraulic model experiment is conducted to observe the deflection and movement of the trapped air pocket in the hump pipe zone. For various pipe flow velocities and air volumes, the head losses and the equilibrium slope angles are measured. The extra head losses are also obtained by reference to the original flow without the trapped air pocket. Accordingly, the equivalent sphere model is proposed to simplify the drag coefficients and estimate the critical slope angles. To predict the possibility and reduce the risk of a hump air lock, an empirical criterion is established using dimensional analysis and experimental fitting. Results show that the extra head losses increase with the increase of the flow velocity and air volume. Meanwhile, the central angle changes significantly with the flow velocity but only slightly with the air volume. An air lock in a hump zone can be prevented and removed by increasing the pipe flow velocity or decreasing the maximum slope of the pipe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.