Tissue-engineering is considered a promising avenue for developing human articular cartilage implants that can be employed for resurfacing damaged cartilage in the early stages of osteoarthritis. In the present study, human cartilage-constructs were produced from human osteoarthritic chondrocytes maintained on a scaffold of HYAFFR-11 in perfusion mini-bioreactors or after implantation and recovery from nude or SCID mice after 3 weeks. The human cartilage-construct extracellular matrix reacted positively with anti-Type II collagen monoclonal antibody, but not with anti-Type I or anti-Type X collagen monoclonal antibodies. A significant portion of the cartilage-construct extracellular matrix stained metachromatic with Toluidine blue-O indicative of sulfated-proteoglycan deposition. Cyclic hydrostatic pressure applied for 4 hrs at 5 MPa using a 1 Hertz sinusoidal frequency significantly increased (p < 0.02) the proportion of apoptotic cells in the cartilage-constructs (41% +/- 4.2%; mean +/- SD) compared to control cartilage-constructs (28.5 +/- 8.4%).
The use of mathematical models to guide case selection could optimize the efficiency and effectiveness of physician time spent on peer review and produce more concrete and meaningful feedback to radiologists undergoing peer review.
Purpose
To evaluate the technical feasibility of automatically removing the ribs and spine from C-arm cone-beam computed tomography (CBCT) images acquired during transcatheter arterial chemoembolization (TACE).
Material and methods
Fifty-eight patients (45.8 ± 5.0 years) with unresectable hepatocellular carcinoma (HCC) underwent transcatheter arterial chemoembolization and had intraprocedural CBCT imaging. Automatic bone removal was performed using model-based segmentation of the ventral cavity. Two interventional radiologists independently evaluated the performance of bone removal, remaining soft tissue retention, and general usability (where both the bone is appropriately removed while retaining soft tissue) for 3D TACE planning on a four-level (complete/excellent, adequate/good, incomplete/questionable, insufficient/bad) score. The proportion of inter-reader agreement was calculated.
Results
For ribs and spine removal, 98.3–100% and 100% of cases showed complete or adequate performance, respectively. In 96.6% of the cases, soft tissue was at least adequately retained. 91.3–93.1% of the cases demonstrated good or excellent general usability for TACE planning. Satisfactory inter-reader agreement proportion was achieved in ribs (93.1%) and spine removal (89.7%), soft tissue retention (84.5%), and general usability for TACE planning (72.4%).
Conclusion
Intraprocedural automatic bone removal on CBCT images is technically feasible and offers good removal of ribs and spine while preserving soft tissue. Its clinical value needs further assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.