In this paper, a microstrip sensor based on a complementary split ring resonator (CSRR)derived structure is proposed to characterize the permittivity and permeability of materials. By loading an etched meandered conductive ring and an interdigital capacitor structure, effective separation of the permittivity sensing area and permeability sensing area is realized, and the field strengths of the corresponding areas are improved. The relationship between the resonant response (resonant frequency and quality factor) of the sensor and the permittivity and permeability of the sample under test (SUT) is discussed, and the theoretical basis for measuring the material properties is given. By analyzing the measured resonant frequency and quality factor, the real and imaginary parts of the permittivity and permeability of the SUT can be determined. The sensor was fabricated on a Rogers 5880 substrate, and four standard dielectric and magnetodielectric (MD) samples were tested. The results show that the measured values of the real and imaginary parts of the permittivity and permeability are in good agreement with the reference data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.