The aim of this study was to develop an aqueous parenteral formulation containing itraconazole (ITZ) using an o/w microemulsion system. A mixture of benzyl alcohol and medium chain triglyceride (3/1) was chosen as the oil phase. Pseudoternary phase diagrams of the microemulsion formations were constructed in order to determine the optimum ratio of oils, the concentration range of surfactant and cosurfactant and the optimum ratio between them. Consequently, the suitability of the chosen microemulsion system as a parenteral formulation was evaluated using droplet size analysis and hemolysis tests. Among the surfactants and cosurfactants screened, a mixture of polyoxyethylene (50) hydrogenated castor oil and ethanol (3/1) showed the largest o/w microemulsion region in the phase diagram. The average droplet size of the microemulsions was < 150 nm, and the hemolysis test showed this formulation to be nontoxic to red blood cells. The pharmacokinetic profiles of the ITZ-microemulsion for itraconazole and its major metabolite, hydroxyitraconazole, were compared with those of a PEG 400 solution and cyclodextrin formulations in rats. Overall, these results highlight the potential of an ITZ-microemulsion formulation for the parenteral route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.