Background: Genome-wide sequencing investigations have identified numerous long noncoding RNAs (lncRNAs) among mammals, many of which exhibit aberrant expression in cancers, including esophageal squamous cell carcinoma (ESCC). Herein, this study elucidates the role and mechanism by which LINC01419 regulates the DNA methylation of glutathione S-transferase pi 1 (GSTP1) in relation to ESCC progression and the sensitivity of ESCC cells to 5-fluorouracil (5-FU). Methods: LINC01419 and GSTP1 levels were quantified among 38 paired ESCC and adjacent tissue samples collected from patients with ESCC. To ascertain the contributory role of LINC01419 in the progression of ESCC and identify the interaction between LINC01419 and GSTP1 promoter methylation, LINC01419 was overexpressed or silenced, and the DNA methyltransferase inhibitor 5-Aza-CdR was treated. Results: Data from the GEO database (GSE21362) and the Cancer Genome Atlas displayed elevated levels of LINC01419 and downregulated levels of GSTP1 in the ESCC tissues and cells. The silencing of LINC01419 led to decreased proliferation, increased apoptosis, and enhanced sensitivity to 5-FU in ESCC cells. Notably, LINC01419 could bind to the promoter region of the GSTP1 gene, resulting in elevated GSTP1 methylation and reduced GSTP1 levels via the recruitment of DNA methyltransferase among ESCC cells, whereby ESCC progression was stimulated accompanied by reduced ESCC cell sensitivity to 5-FU. GSTP1 demethylation by 5-Aza-CdR was observed to reverse the effects of LINC01419 overexpression in ESCC cells and the response to 5-FU. Conclusion: Highly expressed LINC01419 in ESCC promotes GSTP1 methylation, which ultimately acts to promote the event of ESCC and diminish the sensitivity of ESCC cells to 5-FU, highlighting a novel potential strategy to improve 5-FU-based chemotherapy in ESCC.
Approximately 85% of a single administered dose of 5-fluorouracil (5-FU) will be degraded by dihydropyrimidine dehydrogenase (DYPD). Studies have highlighted a link between the complete or partial loss of DYPD function and clinical responses to 5-FU; however, the underlying molecular basis of DPD deficiency remains poorly understood. Hence, the aim of the present study was to evaluate the prevailing hypothesis which suggests that overexpression of LINC00261 possesses the ability to modulate the methylation-dependent repression of DPYD, ultimately resulting in an elevation of the sensitivity of human esophageal cancer cells to 5-FU. LINC00261 levels were initially quantified, followed by analysis of DYPD methylation within the cancerous tissues collected from 75 patients diagnosed with esophageal cancer undergoing 5-FU-based adjuvant chemotherapy. In an attempt to determine the levels of LINC00261 related to the esophageal cancer cell resistance to 5-FU and to identify the interaction between the levels of LINC00261 and methylation of the DYPD promoter, esophageal cancer cells TE-1 and -5 were prepared, in which LINC00261 and the 5-FU-resistant TE-1 and -5 cells were overexpressed. The levels of LINC00261 were reduced among the cancerous tissues obtained from patients exhibiting resistance to 5-FU. Overexpression of LINC00261 was determined to dramatically inhibit proliferation and resistance to apoptosis among 5-FU-resistant TE-1 and -5 cells, whereas silencing of LINC00261 was determined to enhance proliferation and resistance to apoptosis among the TE-1 and -5 cells. DPYD, a confirmed target of LINC00261, displayed a greater incidence of DNA methylation among patient's sensitive to 5-FU. A key finding revealed that overexpressed LINC00261 could increase the methylation of the DPYD promoter through the recruitment of DNA methyltransferase (DNMT), which, in turn, acts to decrease DPYD activity in 5-FU-resistant TE-1 cells, whereas a reversible change was recorded once the demethylation reagent 5-aza-2'-deoxyctidine was employed to treat the 5-FU-resistant TE-1 cells. Taken together, the results of the study provided evidence emphasizing the distinct antitumor ability of LINC00261 in cases of esophageal cancer, which was manifested by overexpression of LINC00261 detected to increase the sensitivity of human esophageal cancer cells to 5-FU by mediating methylation-dependent repression of DPYD. Our study highlighted the potential of LINC00261 as a novel target capable of improving the chemotherapeutic response and survival of patients with esophageal cancer.-Lin, K., Jiang, H., Zhuang, S.-S., Qin, Y.-S., Qiu, G.-D., She, Y.-Q., Zheng, J.-T., Chen, C., Fang, L., Zhang, S.-Y. Long noncoding RNA LINC00261 induces chemosensitization to 5-fluorouracil by mediating methylation-dependent repression of DPYD in human esophageal cancer.
We analyzed the clinicopathological features of 9 breast malignant fibrous histiocytoma (MFH) patients. Immunohistochemistry was used to make both diagnosis and differential diagnosis, and to identify prognostic factors. All tumors lacked epithelial markers but expressed mesenchymal markers, suggesting a mesenchymal origin. Of the five cases expressing Ki-67, two of three patients with axillary lymph node involvement died between 6–8 months, and two died at 17 and 26 months after diagnosis. The two remaining cases, with low Ki-67 expression, had no recurrent or metastatic disease at 145 months after diagnosis. Previous studies have shown that surgery is the primary treatment of choice, but no clear benefit from adjuvant chemotherapy was observed. We demonstrate that axillary lymph node involvement and high expression of Ki-67 are associated with poorer prognosis. A literature review indicates surgery remains the first choice for MFH, but benefits from adjuvant chemotherapy remain unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.