We consider a coupled system consisting of a degenerate porous medium type of Keller-Segel system and Stokes system modeling the motion of swimming bacteria living in fluid and consuming oxygen. We establish the global existence of weak solutions and Hölder continuous solutions in dimension three, under the assumption that the power of degeneracy is above a certain number depending on given parameter values. To show Hölder continuity of weak solutions, we consider a single degenerate porous medium equation with lower order terms, and via a unified method of proof, we obtain Hölder regularity, which is of independent interest.
Abstract. We consider the Cauchy problem for a Keller-Segel-fluid model with degenerate diffusion for cell density, which is mathematically formulated as a porus medium type of Keller-Segel equations coupled to viscous incompressible fluid equations. We establish the global-intime existence of weak solutions and bounded weak solutions depending on some conditions of parameters such as chemotactic sensitivity and consumption rate of oxygen for certain range of diffusive exponents of cell density in two and three dimensions.
We consider a coupled system consisting of the Navier-Stokes equations and a porous medium type of Keller-Segel system that model the motion of swimming bacteria living in fluid and consuming oxygen. We establish the global-in-time existence of weak solutions for the Cauchy problem of the system in dimension three. In addition, if the Stokes system, instead Navier-Stokes system, is considered for the fluid equation, we prove that bounded weak solutions exist globally in time.
AMS Subject Classification: 35Q30, 35Q35
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.