In delay tolerant network (DTN), an end-to-end path is not guaranteed and packets are delivered from a source node to a destination node via store-carry-forward based routing. In DTN, a source node or an intermediate node stores packets in buffer and carries them while it moves around. These packets are forwarded to other nodes based on predefined criteria and finally are delivered to a destination node via multiple hops. In this paper, we improve the dissemination speed of PRoPHET (probability routing protocol using history of encounters and transitivity) protocol by employing epidemic protocol for disseminating message m, if forwarding counter and hop counter values are smaller than or equal to the threshold values. The performance of the proposed protocol was analyzed from the aspect of delivery probability, average delay, and overhead ratio. Numerical results show that the proposed protocol can improve the delivery probability, average delay, and overhead ratio of PRoPHET protocol by appropriately selecting the threshold forwarding counter and threshold hop counter values.
Abstract:Reducing energy consumption of mobile communication networks has gained significant attentions since it takes a major part of the total energy consumption of information and communication technology (ICT). In this paper, we consider 5G networks with heterogeneous macro cells and small cells, where data and control planes are separated. We consider two types of data traffic, i.e., low rate data traffic and high rate data traffic. In basic separation architecture, a macro cell base station (MBS) manages control signals, while a small cell base station (SBS) manages both low rate data traffic and high rate data traffic. In the considered modified separation architecture, an MBS manages control signals and low rate data traffic, while an SBS manages high rate data traffic. Then, an efficient energy saving scheme for base stations (BSs) is proposed, where the state of a BS is determined depending on the number of user equipments (UEs) that request high rate data traffic and the number of UEs that exist under the overlapping areas commonly covered by the considered BS and the neighbor BSs. We formulate an optimization problem for the proposed energy saving scheme and obtain the solution using particle swarm optimization (PSO). Numerical results show that the proposed energy saving scheme in the modified separated network architecture has better energy efficiency compared to the conventional energy saving schemes in both basic and modified separated network architectures. Also, the proposed energy saving scheme has lower aggregate delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.