Purpose. Osteoporosis is a complication of type 2 diabetes, and it is characterized by reduced bone mass, augmented bone fragility, and increased risk of fracture, thus reducing patient quality of life, especially in the elderly. Ferroptosis has been implicated in the pathological process of type 2 diabetic osteoporosis (T2DOP), but the specific underlying mechanisms remain largely unknown. This study clarified the role of activating transcription factor 3 (ATF3) in T2DOP and explored its specific regulatory mechanism, providing a new treatment target for T2DOP. Methods. We cultured hFob1.19 cells in high glucose (HG, 35 mM) and knocked down ATF3 using short hairpin RNA (shRNA). We then measured cell viability, assessed morphology, quantified the expression of ATF3 and glutathione peroxidase 4 (GPX4), detected the levels of reactive oxygen species (ROS) and lipid peroxides, and determined the osteogenic function of osteoblasts. Cystine/glutamate antiporter (system Xc-) activity was evaluated by determining the expression of SLC7A11 and the levels of glutathione (GSH) and extracellular glutamate. We constructed a T2DOP rat model and observed the effect of ATF3 on ferroptosis and T2DOP by knocking down ATF3 using small interfering RNA (siRNA). Then, we evaluated the levels of iron metabolism, lipid peroxidation, and bone turnover in serum, detected the expression of ATF3, SLC7A11, and GPX4 in bone tissues, and assessed bone microstructure using microcomputed tomography. Results. ATF3 expression was increased in osteoblasts under HG condition and in T2DOP rats. Inhibiting the function of ATF3 increased GPX4 levels and reduced the accumulation of ROS and lipid peroxides. These changes inhibited the ferroptosis of osteoblasts and improved osteogenic function. In addition, HG induced ATF3 upregulation, resulting in decreased SLC7A11 expression and lower levels of intracellular GSH and extracellular glutamate. Conclusion. Osteoblast ferroptosis under HG conditions is induced by ATF3-mediated inhibition of system Xc- activity, and these events contribute to T2DOP pathogenesis.
Stroke remains a deadly and disabling disease with limited treatment tragedies due to the limitations of available treatments; novel therapies for stroke are needed. In this article, the synergistic results of dual bone marrow mesenchymal stem cells (BMSC) and fasudil treatment in rat models of ischemic stroke still requires further identi cation. Sprague-Dawley rats were used to construct the middle cerebral artery, occlusion models. BMSCs were incubated with fasudil, and MTT was performed to evaluate cell proliferation. The rats were treated with fasudil+BMSC, BMSC, fasudil, and saline. Blood samples were collected for complete blood count analysis and measurement of serum TNF-α levels. The neurological functions were evaluated. After the rats were sacri ced, immunohistochemical staining and TTC staining was performed. Fasudil promoted the proliferation of BMSCs and induced their differentiation into neuron-like cells. BMSCs increased the proportion of neutrophils; nevertheless, fasudil counteracted the neutrophil increase. The TUJ-1/MAP2/VIII factor expression in the fasudil+BMSC group was signi cantly higher than that in the other groups. The number of GFAP-positive cells decreased in the fasudil+BMSC and BMSC alone groups. The infarct volume in the fasudil+BMSC and BMSC alone groups was signi cantly lower than in the fasudil alone and control groups.Both BMSCs and fasudil exert neurorestorative effects in rat models of cerebral ischemia. Fasudil neutralizes the pro-in ammatory effects of BMSCs, while BMSCs and fasudil together had synergistic effects promoting neurovascular remodeling and neurological function recovery in stroke. A combination of BMSCs and fasudil provides a promising method for the treatment of ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.