The ongoing pandemic of 2019 novel coronavirus disease (COVID-19) is challenging global public health response system. We aim to identify the risk factors for the transmission of COVID-19 using data on mainland China. We estimated attack rate (AR) at county level. Logistic regression was used to explore the role of transportation in the nationwide spread. Generalized additive model and stratified linear mixed-effects model were developed to identify the effects of multiple meteorological factors on local transmission. The ARs in affected counties ranged from 0.6 to 9750.4 per million persons, with a median of 8.8. The counties being intersected by railways, freeways, national highways or having airports had significantly higher risk for COVID-19 with adjusted odds ratios (ORs) of 1.40 (p = 0.001), 2.07 (p < 0.001), 1.31 (p = 0.04), and 1.70 (p < 0.001), respectively. The higher AR of COVID-19 was significantly associated with lower average temperature, moderate cumulative precipitation and higher wind speed. Significant pairwise interactions were found among above three meteorological factors with higher risk of COVID-19 under low temperature and moderate precipitation. Warm areas can also be in higher risk of the disease with the increasing wind speed. In conclusion, transportation and meteorological factors may play important roles in the transmission of COVID-19 in mainland China, and could be integrated in consideration by public health alarm systems to better prevent the disease.
SiCp/Al composites were prepared by vacuum hot pressing and sintering method. Optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) is applied to study the diffusion-homogenization process of various elements of powder, and the effect of the diffusion-homogenization temperature and holding time on the SiCp/Al Composites’ microstructure in state of vacuum hot pressing. The results show that the Enrichment of Cu-phase is existed in the composites organization which is in the state of vacuum hot pressing; Al2CuMg fully dissolve into the Al matrix, Cu fully diffused and the diffusion of various elements becomes homogeneous with the temperature increased and time extend. The best processing parameters for the diffusion-homogenization is at 500°Cfor 3h.
We studied the optimization of 300mm CZ silicon crystal growth in 28 inch hot zone with axial magnetic field. The convex of melt-crystal interfaces toward to the crystal are observed in our simulations under different growth velocities (0.3mm/min, 0.5mm/min and 0.65mm/min). The convections in melt were illustrated under different growth rates and intensities of magnetic field. The growth rate of 0.5mm/min and axial magnetic fields intensity of 0.3T were recommended as an appropriate control condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.