The plant-specific Teosinte-branched 1/Cycloidea/Proliferating (TCP) transcription factor genes are involved in plants’ development, hormonal pathways, and stress response but their evolutionary history is uncertain. The genome-wide analysis performed here for 47 plant species revealed 535 TCP candidates in terrestrial plants and none in aquatic plants, and that TCP family genes originated early in the history of land plants. Phylogenetic analysis divided the candidate genes into Classes I and II, and Class II was further divided into CYCLOIDEA (CYC) and CINCINNATA (CIN) clades; CYC is more recent and originated from CIN in angiosperms. Protein architecture, intron pattern, and sequence characteristics were conserved in each class or clade supporting this classification. The two classes significantly expanded through whole-genome duplication during evolution. Expression analysis revealed the conserved expression of TCP genes from lower to higher plants. The expression patterns of Class I and CIN genes in different stages of the same tissue revealed their function in plant development and their opposite effects in the same biological process. Interaction network analysis showed that TCP proteins tend to form protein complexes, and their interaction networks were conserved during evolution. These results contribute to further functional studies on TCP family genes.
Main conclusion Genome-wide identification, classification, expression analyses, and functional characterization of GRAS genes in oil crop, Brassica napus, indicate their importance in root development and stress response.
MYB proteins are involved in diverse important biological processes in plants. Herein, we obtained the MYB superfamily from the allotetraploid Brassica napus, which contains 227 MYB-related (BnMYBR/Bn1R-MYB), 429 R2R3-MYB (Bn2R-MYB), 22 R1R2R3-MYB (Bn3R-MYB), and two R1R2R2R1/2-MYB (Bn4R-MYB) genes. Phylogenetic analysis classified the Bn2R-MYBs into 43 subfamilies, and the BnMYBRs into five subfamilies. Sequence characteristics and exon/intron structures within each subfamily of the Bn2R-MYBs and BnMYBRs were highly conserved. The whole superfamily was unevenly distributed on 19 chromosomes and underwent unbalanced expansion in B. napus. Allopolyploidy between B. oleracea and B. rapa mainly contributed to the expansion in their descendent B. napus, in which B. rapa-derived genes were more retained. Comparative phylogenetic analysis of 2R-MYB proteins from nine Brassicaceae and seven non-Brassicaceae species identified five Brassicaceae-specific subfamilies and five subfamilies that are lacking from the examined Brassicaceae species, which provided an example for the adaptive evolution of the 2R-MYB gene family alongside angiosperm diversification. Ectopic expression of four Bn2R-MYBs under the control of the viral CaMV35S and/or native promoters could rescue the lesser root hair phenotype of the Arabidopsis thaliana wer mutant plants, proving the conserved negative roles of the 2R-MYBs of the S15 subfamily in root hair development. RNA-sequencing data revealed that the Bn2R-MYBs and BnMYBRs had diverse transcript profiles in roots in response to the treatments with various hormones. Our findings provide valuable information for further functional characterizations of B. napus MYB genes.
The plant-specific WUSCHEL-related homeobox (WOX) transcription factor gene family is important for plant growth and development but little studied in oil crops. We identified and characterized 58 putative WOX genes in Brassica napus (BnWOXs), which were divided into three major clades and nine subclades based on the gene structure and conserved motifs. Collinearity analysis revealed that most BnWOXs were the products of allopolyploidization and segmental duplication events. Gene structure analysis indicated that introns/exons and protein motifs were conserved in each subclade and RNA sequencing revealed that BnWOXs had narrow expression profiles in major tissues and/or organs across different developmental stages. The expression pattern of each clade was highly conserved and similar to that of the sister and orthologous pairs from Brassica rapa and Brassica oleracea. Quantitative real-time polymerase chain reaction showed that members of the WOX4 subclade were induced in seedling roots by abiotic and hormone stresses, indicating their contribution to root development and abiotic stress responses. 463 proteins were predicted to interact with BnWOXs, including peptides regulating stem cell homeostasis in meristems. This study provides insights into the evolution and expression of the WOX gene family in B. napus and will be useful in future gene function research.
Background: The basic helix-loop-helix (bHLH) gene family is one of the largest transcription factor families in plants and is functionally characterized in diverse species. However, less is known about its functions in the economically important allopolyploid oil crop, Brassica napus. Results: We identified 602 potential bHLHs in the B. napus genome (BnabHLHs) and categorized them into 35 subfamilies, including seven newly separated subfamilies, based on phylogeny, protein structure, and exon-intron organization analysis. The intron insertion patterns of this gene family were analyzed and a total of eight types were identified in the bHLH regions of BnabHLHs. Chromosome distribution and synteny analyses revealed that hybridization between Brassica rapa and Brassica oleracea was the main expansion mechanism for BnabHLHs. Expression analyses showed that BnabHLHs were widely in different plant tissues and formed seven main patterns, suggesting they may participate in various aspects of B. napus development. Furthermore, when roots were treated with five different hormones (IAA, auxin; GA 3 , gibberellin; 6-BA, cytokinin; ABA, abscisic acid and ACC, ethylene), the expression profiles of BnabHLHs changed significantly, with many showing increased expression. The induction of five candidate BnabHLHs was confirmed following the five hormone treatments via qRT-PCR. Up to 246 BnabHLHs from nine subfamilies were predicted to have potential roles relating to root development through the joint analysis of their expression profiles and homolog function. Conclusion: The 602 BnabHLHs identified from B. napus were classified into 35 subfamilies, and those members from the same subfamily generally had similar sequence motifs. Overall, we found that BnabHLHs may be widely involved in root development in B. napus. Moreover, this study provides important insights into the potential functions of the BnabHLHs super gene family and thus will be useful in future gene function research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.