We introduce a novel approach for high-dimensional regression with theoretical guarantees. The new procedure overcomes the challenge of tuning parameter selection of Lasso and possesses several appealing properties. It uses an easily simulated tuning parameter that automatically adapts to both the unknown random error distribution and the correlation structure of the design matrix. It is robust with substantial efficiency gain for heavy-tailed random errors while maintaining high efficiency for normal random errors. Comparing with other alternative robust regression procedures, it also enjoys the property of being equivariant when the response variable undergoes a scale transformation. Computationally, it can be efficiently solved via linear programming. Theoretically, under weak conditions on the random error distribution, we establish a finite-sample error bound with a near-oracle rate for the new estimator with the simulated tuning parameter. Our results make useful contributions to mending the gap between the practice and theory of Lasso and its variants. We also prove that further improvement in efficiency can be achieved by a second-stage enhancement with some light tuning. Our simulation results demonstrate that the proposed methods often outperform cross-validated Lasso in various settings. Supplementary materials for this article are available online.
We consider a multiproduct supply-demand network equilibrium model on the basis of Wardrop’s equilibrium principle. We prove that such a network equilibrium model with both a single criterion and multiple criteria are each equivalent to a vector variational inequality. For the case with multiple criteria, we derive the necessary and sufficient conditions for network equilibrium in terms of a vector variational inequality by Gerstewitz’s function when the cost function is vector valued. This result is derived based on conditions that are weaker than those for many existing results. We follow with an example to illustrate the application of the theoretical results.
Penalized (or regularized) regression, as represented by Lasso and its variants, has become a standard technique for analyzing highdimensional data when the number of variables substantially exceeds the sample size. The performance of penalized regression relies crucially on the choice of the tuning parameter, which determines the amount of regularization and hence the sparsity level of the fitted model. The optimal choice of tuning parameter depends on both the structure of the design matrix and the unknown random error distribution (variance, tail behavior, etc). This article reviews the current literature of tuning parameter selection for high-dimensional regression from both theoretical and practical perspectives. We discuss various strategies that choose the tuning parameter to achieve prediction accuracy or support recovery. We also review several recently proposed methods for tuning-free high-dimensional regression. arXiv:1908.03669v1 [stat.ME]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.