Separation of xenon/krypton gas mixtures is one of the valuable but challenging processes in the gas industries due to their close molecular size and similar physical properties. Here, we report a novel ultramicroporous hydrogen-bonded organic framework (termed as HOF-40) constructed from a cyano-based organic building unit of 1,2,4,5-tetrakis(4-cyanophenyl)benzene (TCPB), exhibiting superior separation performance for Xe/Kr mixtures, as clearly demonstrated by dynamic breakthrough curves. GCMC simulation results indicate that the pore confinement effect and abundant accessible binding sites play a synergistic role in this challenging gas separation. Furthermore, this cyano-based HOF displays excellent chemical stability from 12 M HCl to 20 M NaOH aqueous solutions.
High‐purity ethanol is a promising renewable energy resource, however separating ethanol from trace amount of water is extremely challenging. Herein, two ultramicroporous MOFs (UTSA‐280 and Co‐squarate) were used as adsorbents. A prominent water adsorption and a negligible ethanol adsorption identify perfect sieving effect on both MOFs. Co‐squarate exhibits a surprising water adsorption capacity at low pressure that surpassing the reported MOFs. Single crystal X‐ray diffraction and theoretical calculations reveal that such prominent performance of Co‐squarate derives from the optimized sieving effect through pore structure adjustment. Co‐squarate with larger rhombohedral channel is suitable for zigzag water location, resulting in reinforced guest‐guest and guest‐framework interactions. Ultrapure ethanol (99.9 %) can be obtained directly by ethanol/water mixed vapor breaking through the columns packed with Co‐squarate, contributing to a potential for fuel‐grade ethanol purification.
Porous organic materials (POMs) have shown great potential for fabricating tunable miniaturized lasers. However, most pure-POM micro/nanolasers are achieved via coordination interactions, during which strong charge exchanges inevitably destroy the intrinsic gain property and even lead to optical quenching, hindering their practical applications. Herein, we reported on an approach to realize hydrogen-bonded organic framework (HOF)-based in situ wavelength-switchable lasing based on the framework-shrinkage effect. A flexible HOF with reversible framework shrinkage was constructed from gain blocks with multiple rotors. The framework shrinkage of the HOF induced the in situ regulation on the conformation and conjugation degree of gain blocks, leading to distinct energy-level structures with blue/green-color gain emissions. Inspired by this, the in situ wavelength-switchable lasing from HOF microcrystals was achieved through reversibly controlling the framework shrinkage via the absorption/desorption of guests. The results offer useful insight into the use of flexible HOFs for exploiting miniaturized lasers with on-demand nanophotonics performance.
Multicomponent metal−organic frameworks (MOFs) have received much attention as emerging materials capable of precisely programing exquisite structures and specific functions. Here, we applied a partial linker substitution strategy to compile an HKUST-1-like quaternary MOF by introducing a bifunctional ligand into the well-known HKUST-1 structure. FUT-1, a new HKUST-like tbo topology MOF, was assembled with paddlewheel [Cu 2 (COO) 4 ], triangular metallocycle pyrazole cluster Cu 3 (μ 3 -OH) (NN) 3 building blocks, and two distinct linkers. FUT-1 exhibited good mechanical stability, water stability, and chemical stability (pH = 3−12) in aqueous solutions. Moreover, the porous environments created by this multicomponent primitive endow FUT-1 with high C 2 H 2 storage and significantly selective separation performance of C 2 H 2 /CO 2 . Dynamic breakthrough experiments and ideal adsorbed solution theory calculations further demonstrate that FUT-1 can selectively capture C 2 H 2 from C 2 H 2 /CO 2 mixtures under ambient conditions. Based on grand canonical Monte Carlo simulations, the high C 2 H 2 separation performance of FUT-1 is attributed to the π-complex formed between the C 2 H 2 molecule and the trinuclear metallocycle clusters on the wall, which provides stronger affinity for C 2 H 2 recognition than the CO 2 molecule.
Metal−organic frameworks (MOFs) are an emerging kind of laser material, yet they remain a challenge in the controlled fabrication of crystal nanostructures with desired morphology for tuning their optical microcavities. Herein, the shape-engineering of pure MOF microlasers was demonstrated based on the coordination-mode-tailored method. The one-dimensional (1D) microwires and 2D microplates were selectively fabricated through changing the HCl concentration to tailor the coordination modes. Both the single-crystalline microwires and microplates with strong optical confinement functioned as low-threshold MOF microlasers. Moreover, distinct lasing behaviors of 1D and 2D MOF microcrystals confirm a typical shape-dependent microcavity effect: 1D microwires serve as Fabry−Peŕot (FP) resonators, and 2D microplates lead to the whispering-gallerymode (WGM) microcavities. These results provide a special pathway for the exploitation of MOF-based micro/nanolasers with on-demand functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.