Snow is an important water resource and greatly influences water availability in the downstream areas. In this study, snow cover variations of the Upper Heihe River Basin (UHRB) during hydrological years (HY) 2003-2013 (September through August) is examined using the flexible multiday-combined MODIS snow cover products. Spatial distribution and pattern of snow cover from year to year for the basin is found to be relatively stable, with maximum snow cover area (SCA) and snow cover days occurring in HY2004, HY2008 and HY2012. A method, based on correlation coefficients between SCA and climate factors (mainly air temperature and precipitation), is presented to identify the threshold altitude that determines contributions of climate factors to SCA. A threshold altitude of 3650 ± 150 m is found for the UHRB, where below this altitude, both air temperature (Tair) and precipitation are negative factors on SCA, except in the winter season when both are positive factors. Above the threshold altitude, precipitation acts as a positive factor except in summer, while Tair is a negative factor except in autumn. Overall, Tair is the primary controlling factor on SCA below the threshold altitude, while precipitation is the primary controlling factor on SCA above the threshold altitude.
Abstract:In arid regions, C3 vegetation is assumed to be more sensitive to precipitation and CO2 fertilization than C4 vegetation. In this study, normalized difference vegetation index (NDVI) is used to examine vegetation growth in the arid Lower Heihe River Basin, northwestern China, for the past three decades. The results indicate that maximum NDVI (MNDVI) of the area increases over the years and is significantly correlated with precipitation (R = 0.47 and p < 0.01), not temperature (R = −0.04). The upper limit of C3 vegetation cover of the area shows a yearly rising trend of 0.6% or an overall increase of 9% over the period of 25 years, primarily due to the CO2 fertilization effect (CO2 rising 14%) over the same period. C3 dominant areas can be potentially distinguished by both MNDVI asynchronous seasonality and a significant relation between MNDVI and cumulative precipitation. This study provides a potential tool of identifying C3 vegetation from C4 vegetation and confirms the CO2 fertilization effect in this arid region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.