Speckle is a major quality degrading factor in optical coherence tomography (OCT) images. In this work we propose a new deep learning network for speckle reduction in retinal OCT images, termed DeSpecNet. Unlike traditional algorithms, the model can learn from training data instead of manually selecting parameters such as noise level. The proposed deep convolutional neural network (CNN) applies strategies including residual learning, shortcut connection, batch normalization and leaky rectified linear units to achieve good despeckling performance. Application of the proposed method to the OCT images shows great improvement in both visual quality and quantitative indices. The proposed method provides good generalization ability for different types of retinal OCT images. It outperforms state-of-the-art methods in suppressing speckles and revealing subtle features while preserving edges.
Compressed sensing MRI (CS-MRI) is considered as a powerful technique for decreasing the scan time of MRI while ensuring the image quality. However, state of the art reconstruction algorithms are still subjected to two challenges including terrible parameters tuning and image details loss resulted from over-smoothing. In this paper, we propose a deep frequency-division network (DFDN) to face these two image reconstruction issues. The proposed DFDN approach applies a deep iterative reconstruction network (DIRN) to replace the regularization terms and the corresponding parameters by a stacked convolution neural network (CNN). And then multiple DIRN blocks are cascaded continuously as one deeper neural network. Data consistency (DC) layer is incorporated after each DIRN block to correct the k-space data of intermediate results. Image content loss is computed after each DC layer and frequency-division loss is gained by weighting the high frequency loss and low frequency loss after each DIRN block. The combination of image content loss and frequency-division loss is considered as the total loss for constraining the network training procedure. Validations of the proposed method have been performed on two brain datasets. Visual results and quantitative evaluations show that the proposed DFDN algorithm has better performance in sparse MRI reconstruction than other comparative methods.
Low-dose computed tomography (LDCT) imaging faces great challenges. Although supervised learning has revealed great potential, it requires sufficient and high-quality references for network training. Therefore, existing deep learning methods have been sparingly applied in clinical practice. To this end, this paper presents a novel Unsharp Structure Guided Filtering (USGF) method, which can reconstruct high-quality CT images directly from low-dose projections without clean references. Specifically, we first employ low-pass filters to estimate the structure priors from the input LDCT images. Then, inspired by classical structure transfer techniques, deep convolutional networks are adopted to implement our imaging method which combines guided filtering and structure transfer. Finally, the structure priors serve as the guidance images to alleviate over-smoothing, as they can transfer specific structural characteristics to the generated images. Furthermore, we incorporate traditional FBP algorithms into self-supervised training
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.