BackgroundLung cancer is the leading cause of cancer-related death in China. Results from a randomized controlled trial using annual low-dose computed tomography (LDCT) in specific high-risk groups demonstrated a 20% reduction in lung cancer mortality.MethodsA China national lung cancer screening guideline was developed by lung cancer early detection and treatment expert group appointed by the National Health and Family Planning Commission, based on results of the National Lung Screening Trial, systematic review of evidence related to LDCT screening, and protocol of lung cancer screening program conducted in rural China.ResultsAnnual lung cancer screening with LDCT is recommended for high risk individuals aged 50–74 years who have at least a 20 pack-year smoking history and who currently smoke or have quit within the past five years. Individualized decision making should be conducted before LDCT screening. LDCT screening also represents an opportunity to educate patients as to the health risks of smoking; thus, education should be integrated into the screening process in order to assist smoking cessation.ConclusionsA lung cancer screening guideline is provided for the high-risk population in China.
Air pollution has been classified as Group 1 carcinogenic to humans, but the underlying tumorigenesis remains unclear. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China attributed to severe air pollution generated by combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis of air pollution. Here we analyzed the somatic mutations of 164 non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used. Whole genome sequencing revealed a mean of 289 somatic exonic mutations per tumor and the frequent C:G → A:T nucleotide substitutions in Xuanwei NSCLCs. Exome sequencing of 2010 genes showed that Xuanwei and CR NSCLCs had a mean of 68 and 22 mutated genes per tumor, respectively (p < 0.0001). We found 167 genes (including TP53, RYR2, KRAS, CACNA1E) which had significantly higher mutation frequencies in Xuanwei than CR patients, and mutations in most genes in Xuanwei NSCLCs differed from those in CR cases. The mutation rates of 70 genes (e.g., RYR2, MYH3, GPR144, CACNA1E) were associated with patients' lifetime benzo(a)pyrene exposure. This study uncovers the mutation spectrum of air pollution-related lung cancers, and provides evidence for pollution exposure–genomic mutation relationship at a large scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.