Amino-acid metabolism plays a vital role in mammalian target of rapamycin (mTOR) signaling, which is the pivot in colorectal cancer (CRC). Upregulated chaperone-mediated autophagy (CMA) activity contributes to the regulation of metabolism in cancer cells. Previously, we found that sorting nexin 10 (SNX10) is a critical regulator in CMA activation. Here we investigated the role of SNX10 in regulating amino-acid metabolism and mTOR signaling pathway activation, as well as the impact on the tumor progression of mouse CRC. Our results showed that SNX10 deficiency promoted colorectal tumorigenesis in male FVB mice and CRC cell proliferation and survival. Metabolic pathway analysis of gas chromatography–mass spectrometry (GC-MS) data revealed unique changes of amino-acid metabolism by SNX10 deficiency. In HCT116 cells, SNX10 knockout resulted in the increase of CMA and mTOR activation, which could be abolished by chloroquine treatment or reversed by SNX10 overexpression. By small RNA interference (siRNA), we found that the activation of mTOR was dependent on lysosomal-associated membrane protein type-2A (LAMP-2A), which is a limiting factor of CMA. Similar results were also found in Caco-2 and SW480 cells. Ultra-high-performance liquid chromatography–quadrupole time of flight (UHPLC-QTOF) and GC-MS-based untargeted metabolomics revealed that 10 amino-acid metabolism in SNX10-deficient cells were significantly upregulated, which could be restored by LAMP-2A siRNA. All of these amino acids were previously reported to be involved in mTOR activation. In conclusion, this work revealed that SNX10 controls mTOR activation through regulating CMA-dependent amino-acid metabolism, which provides potential target and strategy for treating CRC.
Background Psoriasis is a common chronic inflammatory skin disease associated with overproduction of interleukin-17A (IL-17A). IL-17A monoclonal antibodies (mAbs) have shown clinical efficacy in psoriasis patients. Although a series of different overlapping mechanisms have been found to establish a link between psoriasis and cardiovascular diseases, the underlying mechanisms of the two types of diseases and the potential efficacy of IL-17A mAbs in amelioration of cardiovascular comorbidities remain unclear. Methods Serum samples from two study cohorts including 117 individuals were analyzed using a high-throughput UHPLC-MS platform. Non-targeted metabolic profiling analysis was first conducted with samples from 28 healthy individuals and from 28 psoriasis patients before and after 12-weeks of ixekizumab treatment in study cohort 1. Study cohort 2 was additionally recruited to validate the correlations of the identified metabolites with cardiovascular diseases. Results A total of 43 differential metabolites, including lysophospholipids, free fatty acids, acylcarnitines and dicarboxylic acids, were accurately identified in study cohort 1, and the analysis showed that lipid metabolism was impaired in psoriasis patients. Compared with healthy individuals, psoriasis patients had higher levels of lysophosphatidylcholines, lysophosphatidylinositols, lysophosphatidic acids and free fatty acids, but lower levels of acylcarnitines and dicarboxylic acids. The identified dicarboxylic acid levels were inversely correlated with psoriasis area and severity index (PASI) scores (P < 0.05). The results for study cohort 2 were largely consistent with the results for study cohort 1. Moreover, the levels of all identified lysophosphatidylcholines were higher in psoriasis patients with coronary heart diseases than in psoriasis without coronary heart disease. Notably, most of these lipidic changes were ameliorated by ixekizumab treatment. Conclusion The results of this non-targeted metabolomic analysis indicate that treatment with IL-17A mAbs can not only ameliorate psoriasis lesions but also restore dysregulated lipid metabolism to normal levels in psoriasis patients. Considering that dysregulated lipid metabolism has been regarded as the critical factor in cardiovascular diseases, the recovery of lipid metabolites in psoriasis patients indicates that IL-17A mAbs might have the potential protective effects against cardiovascular comorbidities.
During the coronavirus disease 2019 (COVID-19) pandemic, it were reported that COVID-19 patients could have cutaneous symptoms, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was observed on the skin of COVID-19 patients, which indicated that the skin is one target of SARS-CoV-2 . Meanwhile, reports about SARS-CoV-2 transmission through food cold-chain overpacks emerged. With the fact that SARS-CoV-2 could survive on the skin for more than 9 hours, the skin could be implicated in SARS CoV-2 transmission. Angiotensin-converting enzyme 2 (ACE2), a critical membrane protein for SARS-CoV-2 that enters a host cell, was recognized to be associated with the risk of SARS-CoV-2 infection. Therefore, tissues that express ACE2 might have the potential to be infected by and transmit SARS-CoV-2 . The skin is one such tissue that expresses ACE2. However, unlike the lung that expresses ACE2 on the upper-most epithelial layer, the skin is composed of different layers of cells that function as a barrier, and cells under the top epidermal layer express ACE2. Since the skin barrier is the first line of protection, the typical position of ACE2-expressing cells in the skin implies that the skin barrier function could be the mediator of SARS-CoV-2 . In our study, we found that ACE2 could be expressed in the skin, and its expression level is increased in psoriasis, an inflammatory disease of the skin with barrier dysfunction. Additionally, by applying the SARS-CoV-2 pseudovirus on mouse models with or without deteriorated skin barrier, we found that the SARS-CoV-2 pseudovirus could infect the skin and lungs of mouse models, and when the skin barrier was impaired, more SARS-CoV-2 -infected cells could be found. Thus, we hypothesized that a deteriorated condition of the skin barrier might increase the risk of SARS-CoV-2 infection through the skin.
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of skin-homing T-cell neoplasms. Clinical management is stage based but diagnosis and prognosis could be extremely challenging. The presented study aims to explore the metabolic profiling of CTCL by an accelerated untargeted metabolomics data analysis tool "Mummichog" to facilitate the discoveries of potential biomarkers for clinical early stage diagnosis, prognosis, and treatments in CTCL. Ultra high-performance liquid chromatography-quadrupole time-of-flight-based untargeted metabolomics were conducted on the skin and plasma of CTCL mice. It showed that the metabolism of skin changed greatly versus control samples in the development of CTCL. Increased l-glutamate and decreased adenosine monophosphate were the most essential metabolic features of CTCL tumor and tumor adjacent skins. Unique metabolism changes in tumor adjacent non-involved skin tissues (ANIT) occurred in the progress of carcinogenesis, including upregulated cytidine-5'-triphosphate, aberrant biosynthesis of prostaglandins, pyrimidine, mevalonate pathway, and tryptophan degradation. Sharply elevated 5-phospho-α-d-ribose 1-diphosphate (PRPP) marked the final state of tumor in CTCL. In the plasma, systematic shifts in corticosterone, sphingolipid, and ceramide metabolism were found. These uncovered aberrant metabolites and metabolic pathways suggested that the metabolic reprogramming of PRPP in tumor tissues may cause the disturbance of cytidine and uridine metabolic homeostasis in ANIT. Accumulative cytidine-5'-triphosphate in ANIT may exert positive feedback on the PRPP level and leads to CTCL further development. In addition, the accelerated data analysis tool "Mummichog" showed good practicability and can be widely used in high-resolution liquid chromatography mass spectrometry-based untargeted metabolomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.